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Preface

This volume contains the refereed proceedings of the Fourth International Con-
ference on Sequences and Their Applications (SETA 2006), held in Beijing, China
during September 24–28, 2006. The previous three conferences SETA ’98, SETA
2001, and SETA 2004 were held in Singapore, Bergen, and Seoul, respectively.
The SETA conferences are motivated by the numerous applications of sequences
in modern communication systems. These applications include pseudorandom
sequences in spread spectrum, code-division-multiple-access, stream ciphers in
cryptography, and several connections to coding theory and boolean functions.

The Technical Program Committee of SETA 2006 refereed 70 submitted pa-
pers. This represented more submissions than to any of the previous SETA
conferences. The committee therefore had the challenging task of selecting 32
papers to be presented at the conference in addition to 4 invited papers.

The Co-chairs of the Technical Program Committee for SETA 2006, were
Guang Gong (University of Waterloo) and Tor Helleseth (University of Bergen),
with Hong-Yeop Song (Yonsei University, Korea) and Kyeongcheol Yang (Po-
hang University of Science and Technology, Korea) as the co-editors for these
proceedings.

The editors wish to thank the other members of the Technical Program Com-
mittee: Anne Canteaut (INRIA, France), Claude Carlet (INRIA and
University of Paris 8, France), Habong Chung, (Hongik University, Korea), Zong-
duo Dai (University of Science and Technology of China, Beijing, China), Cun-
sheng Ding (Hong Kong University of Science and Technology, Hong Kong),
Pingzhi Fan (Southwest Jiaotong University, China), Dengguo Feng (Chinese
Academy of Sciences, China), Solomon W. Golomb (University of Southern
California, USA), Kyoki Imamura (Kyushu Institute of Technology, Japan),
Jonathan Jedwab (Simon Fraser University, Canada), Thomas Johansson (Uni-
versity of Lund, Sweden), Andrew Klapper (University of Kentucky, USA), P.
Vijay Kumar (University of Southern California, USA), Wai Ho Mow (Hong
Kong University of Science and Technology, Hong Kong), Harald Niederre-
iter (National University of Singapore, Singapore), Jong-Seon No (Seoul Na-
tional University, Korea), Matthew G. Parker (University of Bergen, Norway),
Kenneth G. Paterson (Royal Holloway, University of London, UK), Alexan-
der Pott (Otto-von-Guericke-University Magdeburg, Germany), Hans Schotten
(Qualcomm Germany, Nuremberg, Germany), Parampalli Udaya (University of
Melbourne, Australia), and Amr Youssef (Concordia University, Canada) for
providing clear, insightful, and prompt reviews of the submitted papers.

The editors are also grateful to Serdar Boztas, Jin-Ho Chung, Deepak Ku-
mar Dalai, Frédéric Didier, Gary Greenfield, Yun-Kyoung Han, Tom Høholdt,
Alexander Kholosha, Margreta Kuijper, Gohar Kyureghyan, Cedric Lauradoux,
Subhamoy Maitra, Joe Rushanan, Frank Ruskey, Igor Semaev, Jean-Pierre



VI Preface

Tillich, and Nam Yul Yu for their help and assistance in the reviewing of papers
for SETA 2006. A special thanks goes to Sondre Rønjom for handling all the
submissions and the web-review software during the review process.

In addition to the contributed papers, there are four invited papers. These
papers provide a historical overview as well as new developments in important ar-
eas of the design and analysis of sequences. The invited contribution by Solomon
Golomb presents a retro-perspective of some selected results on sequences. The
invited paper by Harald Niederreiter includes an updated overview and some
recent important results on the complexity of multisequences. Vijay Kumar pro-
vides an overview and new results on optical orthogonal codes. This topic is
motivated by applying code division multiple access (CDMA) techniques in op-
tical networks. Zongduo Dai presents an overview of multi-continued fraction
algorithms and their applications to sequences.

We wish to thank Pingzhi Fan and Dengguo Feng for their support as Gen-
eral Co-chairs of SETA 2006, and Chuan-Kun Wu for local arrangements and
updating the web site of SETA ’06. We also thank Yi Qin for her support as
secretary of SETA 2006, and Shi Zhang for her support as treasurer of SETA
2006. Last but not least, we thank all the authors of the papers for their help
and collaboration in preparing this volume. Finally, we would like to thank the
National Science Foundation of China (NSFC) and the Chinese Academy of
Sciences (CAS) for their financial support.

September 2006 Guang Gong
Tor Helleseth

Hong-Yeop Song
Kyeongcheol Yang
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Shift Register Sequences – A Retrospective

Account

Solomon W. Golomb

University of Southern California
Viterbi School of Engineering
Los Angeles, CA 90089-2565

milly@usc.edu

Abstract. Binary feedback shift registers, with applications to reliable
communications, stream cipher cryptography, radar signal design, pseu-
dorandom number generation, digital wireless telephony, and many other
areas, have been studied for more than half a century. The maximum-
length binary linear feedback shift registers, called m-sequences or PN
sequences, are the best-known and most thoroughly understood special
case.

The m-sequences have several important randomness properties, and
are known as pseudo-random sequences. They are characterized by the
cycle-and-add property, whereby the term-by-term sum of two cyclic
shifts is a third cyclic shift. Along with other families of binary sequences
that correspond to cyclic Hadamard difference sets, they have the two-
level autocorrelation property. The m-sequences share the span-n prop-
erty (all subsequences of length n, except n zeroes, occur in each period
of length 2n − 1) with a far larger class of nonlinear shift register se-
quences. No counterexample has been found to the conjecture that only
the m-sequences have both the two-level autocorrelation and the span-n
properties.

The class of m-sequences is too small, and has too many regularities,
to provide useful cryptographic security as key sequences for stream ci-
phers. For this purpose, nonlinear shift register sequences which have
large linear span and a sufficiently high degree of correlation immunity
may be employed.

1 Linear Shift Register Sequences

Let S0 = {a1, a2, . . . , ap} = {ai} be a binary sequence of period p, and Sj =
{a1+j, a2+j . . . , aj}for all 0 ≤ j ≤ p − 1. Then S0 is an m-sequence if and only
if Si + Sj = Sk for all 0 ≤ i < j ≤ p − 1, where addition of sequences is term-
by-term and modulo 2. Equivalently, if a p-component binary vector, together
with all its cyclic shifts and the p-component zero vector, form a subspace of
GF (2p), then p = 2n− 1 for some n, and the binary sequence is an m-sequence;
and conversely, every m-sequence has this property.

There are φ(p)
n = φ(2n−1)

n cyclically distinct m-sequences of degree n and
period p, where φ is Euler’s phi-function. Of the many additional properties

G. Gong et al. (Eds.): SETA 2006, LNCS 4086, pp. 1–4, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 S.W. Golomb

possessed by these sequences, two of the most important are the span-n property
and the two-level autocorrelation property. The span-n property here refers to a
binary sequence of period p = 2n − 1 in which every possible n-bit subsequence
except for n zeroes occurs exactly once in each period. These sequences are
in direct one-to-one correspondence with the de Bruijn sequences of span n,
which have period 2n, and in which every possible n-bit subsequence appears
exactly once in each period; and the exact number of cyclically distinct de Bruijn
sequences is well known [1] to be 22n−1−n for span n, for every positive integer
n. The two-level autocorrelation property for m-sequences asserts that between
Si and Sj , for all 0 ≤ i < j ≤ p − 1, there are p−1

2 = 2n−1 − 1 term-by-
term agreements and p+1

2 = 2n−1 term-by-term disagreements. The cyclically
distinct binary two-level autocorrelation sequences of period p are in one-to-one
correspondence with cyclic Hadamard difference sets modulo p, which are the
perfect (v, k, λ) difference sets having (v, k, λ) = (p, p−1

2 , p−3
4 ) = (2n − 1, 2n−1 −

1, 2n−2 − 1).
All cyclic Hadamard difference sets with these parameters have been found by

exhaustive computer searches for each degree n, 2 ≤ n ≤ 10. All the examples
thus found belong to families of cyclic Hadamard difference sets, for multiple
values of p, which were all known before the complete search at p = 210−1 = 1023
was undertaken. There is some optimism that all the constructions which yield
cyclic Hadamard difference sets are now known (see [2]), but this has not been
proved.

Every m-sequence of period p = 2n − 1 is simultaneously a span-n sequence
and a (p, p−1

2 , p−3
4 ) cyclic Hadamard sequence. It has been conjectured that the

converse is also true: that is, that if a binary sequence has both span-n and
two-level autocorrelation, then it must be an m-sequence. While the truth of
this conjecture has been verified for all n ≤ 10, and for certain two-level auto-
correlation sequences with n > 10, the general case of this conjecture remains
open.

The m-sequences of period p = 2n − 1 are in one-to-one correspondence with
the irreducible polynomials of degree n overGF (2) whose roots are primitive pth-
roots of unity. It is conjectured that there are infinitely many such polynomials
with only three terms, xn + xa + 1, called primitive trinomials over GF (2).
It has even been conjectured that xn + x + 1 is primitive for infinitely many
values of n. By a theorem of Richard Swan, there are no primitive (or even
irreducible) trinomials xn + xa + 1 where the degree n is a multiple of 8. By a
theorem of Øystein Ore, if f(x) =

∑n
i=0 aix

i is a primitive irreducible polynomial
over GF (2), then F (x) =

∑n
i=0 aix

2i−1 is irreducible (though not necessarily
primitive). While primitive trinomials fail to exist for infinitely many degrees
n, it is conjectured that primitive pentanomials (five-term polynomials) exist
for every degree n ≥ 5. However, it has not even been proved that there are
infinitely many degrees n having a primitive polynomial with no more than t
terms, for any specific positive integer t.
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2 Nonlinear Shift Register Sequences

In contrast to linear binary feedback shift registers, which are well-understood
mathematically, the much larger family of nonlinear feedback shift registers has
far fewer regularities. The most general feedback function for an n-stage binary
shift register is an arbitrary one of the 22n

boolean functions f(x1, x2, . . . , xn) of
n binary variables, where the variables are taken from the n stages of the shift
register. The 2n possible states of an n-stage shift register become the vertices
of a directed graph (“digraph”) whose directed edges go from each state to its
successor state. For any particular shift register, this digraph is a subgraph of the
de Bruijn graph, whose edges indicate all the possible shift register transitions
from one state to the next. In the de Bruijn graph for the general n-stage shift
register there are 2n vertices and 2n+1 directed edges, showing the two possible
predecessors and the two possible successors of each state of the shift register.

For any specific nonlinear shift register, its digraph will decompose entirely
into one or more disjoint cycles (i.e. “cycles without branches”) if and only if one
can write the feedback function f(x1, x2, . . . , xn) in the form g(x1, x2, . . . , xn−1)
+ xn, where xn comes from the “oldest” stage of the shift register, and is added
modulo 2 to an arbitrary boolean function g(x1, x2, . . . , xn−1) of the other n− 1
stages. In this case of “pure cycles without branches”, the number of cycles
has the same parity (even or odd) as the number of ones in the truth table of
g(x1, x2, . . . , xn−1), for all n > 2. In particular, for n > 2, in order to get all 2n

possible states of the shift register to lie on a single cycle, the truth table for
g(x1, x2, . . . , xn−1) must have an odd number of ones, which requires that all n−1
variables occur, and occur nonlinearly, in the computation of g(x1, x2, . . . , xn−1).

3 Applications

When a nonlinear shift register is used to generate a key stream for use in a
stream cipher, cryptanalytic attacks which attempt to reconstruct, in whole
or in part, the structure of the shift register being used, are usually based
on multi-dimensional correlations of the key sequence. These correlation values
correspond directly to the invariants, described in [1], of the boolean function
g(x1, x2, . . . , xn−1), which can be obtained from the Walsh function expansion
coefficients of the truth table of the function g.

Shift registers are also used for both the encoding and the decoding of both
block codes and convolutional codes. They are used to generate the pseudo-
random binary chip sequences needed for spectral spreading in “direct-sequence
spread spectrum” secure communications and for mutual non-interference be-
tween callers in code division multiple access (CDMA) wireless telephony. The
two-level correlation property makes m-sequences very well suited for use as
modulation patterns in radar and sonar applications.

For a more detailed account of the properties of both linear and nonlinear
shift register sequences, see [1]. For a description of the various constructions
now known for (2n− 1, 2n−1− 1, 2n−2− 1) cyclic (Hadamard) difference sets, as
well as a concluding chapter briefly mentioning various applications, see [2].
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The Probabilistic Theory of the Joint Linear

Complexity of Multisequences

Harald Niederreiter

Department of Mathematics, National University of Singapore,
2 Science Drive 2, Singapore 117543, Republic of Singapore

nied@math.nus.edu.sg

Abstract. The joint linear complexity and the joint linear complexity
profile are standard complexity measures for multisequences in the con-
text of word-based stream ciphers. The last few years have seen major
advances in the theory of these complexity measures, especially with re-
gard to probabilistic results on the behavior of random (periodic and
nonperiodic) multisequences. This paper presents a survey of these de-
velopments as well as the necessary background for the results.
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1 Introduction

A central issue in the security analysis of stream ciphers is the quality assess-
ment of keystreams. In other words, we need to know how close the keystream
is to “true randomness”. Keystreams guaranteeing an adequate security level
must meet various requirements such as possessing good statistical randomness
properties and a high complexity in a suitable sense. In the system-theoretic
approach to the quality assessment of keystreams, the basic complexity measure
is the linear complexity (see [33]). The yardstick in the assessment of keystreams
by means of linear complexity is the behavior of random sequences (in an ap-
propriate stochastic model) with respect to the linear complexity.

Recent developments in stream ciphers point towards an interest in word-
based or vectorized stream ciphers (see e.g. [3], [7], [17], and the proposals
DRAGON, NLS, and SSS to the ECRYPT stream cipher project [10]). The
theory of word-based stream ciphers requires the study of multisequences, i.e.,
of parallel streams of finitely many sequences. In the framework of linear com-
plexity theory, the appropriate complexity measure for multisequences is the
joint linear complexity.

Let Fq be the finite field of order q, where q is an arbitrary prime power. By
a (finite or infinite) sequence over Fq we mean a sequence of elements of Fq.
More generally, for an integer m ≥ 1, an m-fold multisequence over Fq is an
m-tuple of sequences over Fq. In other words, an m-fold multisequence over Fq

is given by S = (S1, . . . , Sm), where each Sj , j = 1, . . . ,m, is a sequence over
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6 H. Niederreiter

Fq. For the purposes of this paper, when considering an m-fold multisequence
S = (S1, . . . , Sm) over Fq, we agree that all sequences Sj , j = 1, . . . ,m, have the
same (finite or infinite) length and we call it the length of the multisequence.
The following definitions are fundamental for this paper.

Definition 1. Let n be a positive integer and let S = (S1, . . . , Sm) be an m-fold
multisequence over Fq of length at least n. Then the nth joint linear complexity
L

(m)
n (S) of S is the least order of a linear recurrence relation over Fq that simul-

taneously generates the first n terms of each sequence Sj, j = 1, . . . ,m. If S has
infinite length, then the sequence L(m)

1 (S), L(m)
2 (S), . . . of nonnegative integers is

called the joint linear complexity profile of S.

Definition 2. Let S = (S1, . . . , Sm) be an ultimately periodic m-fold multise-
quence over Fq, that is, each sequence Sj, j = 1, . . . ,m, is ultimately periodic.
Then the joint linear complexity L(m)(S) of S is defined by

L(m)(S) = sup
n≥1

L(m)
n (S).

We always have 0 ≤ L
(m)
n (S) ≤ n and L

(m)
n (S) ≤ L

(m)
n+1(S). If S is ultimately

periodic, then L(m)(S) <∞.
This paper surveys the theory of the joint linear complexity and the joint

linear complexity profile of multisequences, with a special emphasis on recent
developments. The last few years have indeed seen dramatic progress in this
theory which was undoubtedly motivated by the increased activity in the design
of word-based stream ciphers. To create a suitable backdrop for the landscape
of joint linear complexity, we first present a concise review of the case of single
sequences in Section 2. The core of the paper is Section 3 which covers recent
work on the joint linear complexity profile of multisequences and, in particu-
lar, the resolution of a conjecture that provides a description of the asymptotic
behavior of the joint linear complexity profile of random multisequences. Sec-
tion 4 is devoted to recent results on the joint linear complexity of periodic
multisequences.

For general background on linear complexity and joint linear complexity, we
refer to the monographs [2] and [9] and to the survey articles [27], [28], and [33].

2 The Linear Complexity Profile of Single Sequences

In the casem = 1 we get a single sequence S over Fq. To simplify the notation, we
write Ln(S) for L(1)

n (S) and L(S) for L(1)(S). Note that in the case of a single
sequence, we speak of the linear complexity and the linear complexity profile
instead of the joint linear complexity and the joint linear complexity profile,
respectively.

For a positive integer n, let F
n
q be the set of n-tuples of elements of Fq,

or equivalently the set of sequences over Fq of length n. If L is an integer with
0 ≤ L ≤ n, then Nn(L) denotes the number of sequences S ∈ F

n
q with Ln(S) = L.
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It is trivial that Nn(0) = 1. According to the classical formula of Gustavson [16],
we have

Nn(L) = (q − 1)qmin(2L−1,2n−2L) for 1 ≤ L ≤ n. (1)

A proof of this formula can be found also in the book of Niederreiter and Xing
[31, Theorem 7.1.6].

We use a canonical stochastic model whereby finite sequences over Fq of the
same length are equiprobable. In detail, let μq be the uniform probability mea-
sure on Fq which assigns the measure q−1 to each element of Fq. This measure
induces the complete product measure μ∞

q on the set F∞
q of infinite sequences

over Fq. For any integer n ≥ 1, the expected value En of the nth linear com-
plexity Ln(S) of random infinite sequences S over Fq is then given by

En =
1
qn

n∑
L=1

LNn(L) =
n

2
+ θq −

n

(q + 1)qn
− 1

(q + 1)2qn−1
, (2)

where θq = q
(q+1)2 if n is even and θq = q2+1

2(q+1)2 if n is odd. This formula was
proved by Rueppel [32, Chapter 4] for q = 2 and by Smeets [36] for arbitrary q.
The same sources contain formulas for the variance Vn of Ln(S) for q = 2 and
arbitrary q, respectively, and the formula in [36] shows that Vn = O(q−1) with
an absolute implied constant.

The linear complexity profile of a single infinite sequence S over Fq can be
described completely in terms of the continued fraction expansion of the gener-
ating function of S (see [24] and [31, Theorem 7.1.4]). In particular, the jumps
in the linear complexity profile are given exactly by the degrees of the partial
quotients — which are polynomials over Fq — in this continued fraction expan-
sion. Equivalently, the linear complexity profile can be described in terms of the
Berlekamp-Massey algorithm.

The connection between linear complexity profiles and continued fraction ex-
pansions is the basis for a powerful method of analyzing the asymptotic behavior
of the linear complexity profile of random single infinite sequences over Fq (see
[25]). According to this approach, the continued fraction expansion gives rise to
a dynamical system on the set of generating functions over Fq. This dynamical
system is isomorphic to a Bernoulli shift on the set P∞

q of all infinite sequences
of elements of Pq := {f ∈ Fq[x] : deg(f) ≥ 1}. By virtue of this isomorphism,
the continued fractions dynamical system inherits all the dynamical properties
of the Bernoulli shift, such as being ergodic, and these properties lead, in turn, to
probabilistic results on the linear complexity profile. For instance, the individual
ergodic theorem yields the following theorem from [25].

Theorem 1. We have μ∞
q -almost everywhere

lim
n→∞

Ln(S)
n

=
1
2
.

Recall that “almost everywhere” means the same as “with probability 1” under
the ambient probability measure, in this case μ∞

q on the set F
∞
q . A more detailed
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analysis leads to the following stronger result from [25]. Here and in the sequel,
we write logq for the logarithm to the base q.

Theorem 2. We have μ∞
q -almost everywhere

lim inf
n→∞

Ln(S)− n
2

logq n
= −1

2

and

lim sup
n→∞

Ln(S)− n
2

logq n
=

1
2
.

Theorem 1 can be proved also by a relatively elementary argument which uses
only the formula (1) as well as the Borel-Cantelli lemma from probability the-
ory. This method of proof was delineated in [26]. However, this simpler method
does not seem capable of yielding a proof of the stronger Theorem 2. Note that
Theorem 2 says, in particular, that for a random single infinite sequence S over
Fq we have

Ln(S) =
n

2
+O(log n) for all n ≥ 2,

and furthermore deviations from n
2 of the order of magnitude log n must appear

for infinitely many n in both the positive and the negative direction.

3 The Joint Linear Complexity Profile of Multisequences

As outlined in Section 1, it is crucial for the quality assessment of multisequences
to determine the behavior of the joint linear complexity profile of random multi-
sequences of infinite length. This turns out to be a challenging task. The strategy
should of course be to generalize the tools in the analysis of single sequences to
the case of multisequences. The only known powerful method in the case of sin-
gle sequences is based on the dynamical system that results from the continued
fraction or Berlekamp-Massey algorithm (see Section 2). Although various mul-
tidimensional versions of the Berlekamp-Massey algorithm have been developed
(see e.g. [1], [4], [8], [9, Appendix A], [11], [12], [18], [34], [38]), it is not clear
whether any of these can be linked with a dynamical system possessing favorable
properties such as ergodicity. The second path to follow is to try to generalize the
formula (1) to multisequences and then to extend the method in [26]. This was
the approach chosen by Niederreiter and Wang and is described in the sequel.

The principal aim is to find an analog of Theorem 1 for the case of multise-
quences. There is a folklore conjecture mentioned e.g. in [39] which says that for
m-fold multisequences S over Fq of infinite length we should have

lim
n→∞

L
(m)
n (S)
n

=
m

m+ 1
(3)

with probability 1. This conjecture has now been settled (see Theorem 3 below).
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The first step in the proof of (3) is the generalization of the formula (1) to
multisequences. For integers m ≥ 1, n ≥ 1, and 0 ≤ L ≤ n, let N (m)

n (L) denote
the number of m-fold multisequences S over Fq of length n with L(m)

n (S) = L. It
is trivial that N (m)

n (0) = 1. For m ≥ 2, Niederreiter [28] found the first instance
of an explicit formula for the counting function N

(m)
n (L) by treating the special

case of the “lower half” of the range for L, thus obtaining

N (m)
n (L) = (qm − 1)q(m+1)L−m for 1 ≤ L ≤ n

2
. (4)

This case is considered easier because in this range for L, there is a unique
minimal polynomial for any m-fold multisequence S over Fq of length n with
L

(m)
n (S) = L, and this allows a reduction of the enumeration problem for mul-

tisequences to an enumeration problem for polynomials over Fq which can be
handled by the theory of arithmetic functions on polynomial rings over finite
fields (see [28] for the details). In view of (1), the formula (4) is of course also
valid for m = 1.

In the range n/2 < L ≤ n, it seems much more difficult to get a formula for
N

(m)
n (L). Wang and Niederreiter [37] developed an approach to this enumera-

tion problem which is founded on the sophisticated multisequence shift-register
synthesis algorithm of Wang, Zhu, and Pei [38]. The latter algorithm is, in turn,
based on a lattice basis reduction algorithm in function fields due to Schmidt [35].

For any integers m ≥ 1 and L ≥ 1, let P (m;L) be the set of m-tuples I =
(i1, . . . , im) ∈ Zm with i1 ≥ i2 ≥ · · · ≥ im ≥ 0 and i1 + · · · + im = L. For any
I = (i1, . . . , im) ∈ P (m;L), let λ(I) be the number of positive entries in I. Then
I can be written in the form

I = (i1, . . . , isI,1︸ ︷︷ ︸
sI,1

, isI,1+1, . . . , isI,1+sI,2︸ ︷︷ ︸
sI,2

, . . . , isI,1+···+sI,t−1+1, . . . , isI,1+···+sI,t︸ ︷︷ ︸
sI,t

,

. . . , isI,1+···+sI,μ(I)−1+1, . . . , isI,1+···+sI,μ(I)︸ ︷︷ ︸
sI,μ(I)

, iλ(I)+1, . . . , im︸ ︷︷ ︸
sI,μ(I)+1

),

where isI,1+···+sI,t−1+1 = · · · = isI,1+···+sI,t > isI,1+···+sI,t+1 for 1 ≤ t ≤ μ(I),
iλ(I)+1 = · · · = im = 0, and λ(I) = sI,1 + · · · + sI,μ(I). If λ(I) = m, then
sI,μ(I)+1 = 0. Furthermore, we define

c(I) =
λ(I)∏
i=1

(qm+1−i − 1)(qi − 1)
q − 1

,

d(I) =
μ(I)∏
j=1

sI,j∏
i=1

qi − 1
q − 1

.

Put
eλ(I) = 2× (0, 1, 2, . . . , λ(I), 0, . . . , 0) ∈ Z

m+1.
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For I ∈ P (m;L), let [I, n−L] denote the vector obtained by arranging the m+1
numbers between the square brackets in nonincreasing order. Let · denote the
standard inner product in Rm+1. We define b(I, n−L) as follows. If 0 ≤ n−L <
iλ(I), then we put

b(I, n− L) = eλ(I) · [I, n− L]− λ(I)(λ(I) − 1)
2

.

If isI,1+···+sI,w+1 ≤ n−L < isI,1+···+sI,w for some integer w with 1 ≤ w ≤ μ(I)−1,
then

b(I, n− L) = eλ(I) · [I, n− L]−
(
λ(I)(λ(I) + 1)

2
− (sI,1 + · · ·+ sI,w)

)
.

Finally, if n− L ≥ i1, then

b(I, n− L) = eλ(I) · [I, n− L]− λ(I)(λ(I) + 1)
2

.

The formula for N (m)
n (L) in [37] is now given as follows.

Proposition 1. For any integers m ≥ 1, n ≥ 1, and 1 ≤ L ≤ n, we have

N (m)
n (L) =

∑
I∈P (m;L)

c(I)
d(I)

qb(I,n−L).

Convenient closed-form expressions for N (m)
n (L) were shown in the special cases

m = 2 (see [37]) and m = 3 (see [30]). The derivation of such expressions for
N

(m)
n (L) is exceedingly more complicated the larger the value of m.
We extend the stochastic model in Section 2 from single sequences to multi-

sequences. The assumptions are the following: (i) finite sequences over Fq of the
same length are equiprobable; (ii) corresponding terms in the m streams making
up an m-fold multisequence over Fq are statistically independent. Let Fm

q be the
set of m-tuples of elements of Fq and let (Fm

q )∞ be the set of infinite sequences
with terms from Fm

q . It is obvious that (Fm
q )∞ can be identified with the set

of m-fold multisequences over Fq of infinite length, and henceforth we will use
this identification. Let μq,m be the uniform probability measure on F

m
q which

assigns the measure q−m to each element of Fm
q . Furthermore, let μ∞

q,m be the
complete product measure on (Fm

q )∞ induced by μq,m. The following theorem,
which proves the conjecture (3), was shown by Niederreiter and Wang [29] on
the basis of Proposition 1.

Theorem 3. For any integer m ≥ 1 we have μ∞
q,m-almost everywhere

lim
n→∞

L
(m)
n (S)
n

=
m

m+ 1
.

This result was refined in [30] to obtain the following weak analog of Theorem 2.



The Probabilistic Theory of the Joint Linear Complexity of Multisequences 11

Theorem 4. For any integer m ≥ 1 we have μ∞
q,m-almost everywhere

− 1
m+ 1

≤ lim inf
n→∞

L
(m)
n (S)− mn

m+1

logq n
≤ lim sup

n→∞

L
(m)
n (S) − mn

m+1

logq n
≤ 1.

Theorem 4 shows, in particular, that μ∞
q,m-almost everywhere we have

L(m)
n (S) =

mn

m+ 1
+O(log n) as n→∞.

We note also that Dai, Imamura, and Yang [5] have given a sufficient condition
for an m-fold multisequence S over Fq of infinite length to satisfy

lim
n→∞

L
(m)
n (S)
n

=
m

m+ 1
.

For any integers m ≥ 1 and n ≥ 1, let E(m)
n be the expected value of the

nth joint linear complexity of random m-fold multisequences over Fq of infinite
length. We can write E(m)

n in the form

E(m)
n =

1
qmn

n∑
L=1

LN (m)
n (L).

For m = 1 we have the explicit formula (2) for this expected value. For m = 2
and q = 2 it was proved by Feng and Dai [13] and for m = 2 and arbitrary q it
was shown by Wang and Niederreiter [37] that

E(2)
n =

2n
3

+O(1) as n→∞.

For m = 3 we have

E(3)
n =

3n
4

+O(1) as n→∞

according to a result of Niederreiter and Wang [30]. The following theorem holds
for arbitrarym and can be easily derived from Theorem 3 by using the dominated
convergence theorem (see [29]).

Theorem 5. For any integer m ≥ 1 we have

E(m)
n =

mn

m+ 1
+ o(n) as n→∞.

Niederreiter and Wang [30] conjectured that for any integer m ≥ 1 we have

E(m)
n =

mn

m+ 1
+O(1) as n→∞.

According to the results mentioned above, this conjecture is settled for m ≤ 3.
Another result supporting this conjecture is the inequality

E(m)
n ≥ mn

m+ 1
+ c for all m ≥ 1 and n ≥ 1

with an absolute constant c established in [30].
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In analogy with a definition for single sequences (see [24]), an m-fold multise-
quence S over Fq of infinite length is said to have an almost perfect joint linear
complexity profile if there exists a constant C(S) such that

L(m)
n (S) ≥ mn

m+ 1
+ C(S) for all n ≥ 1.

Such multisequences were investigated and constructed by Xing [39] and Xing,
Lam, and Wei [40] and more recently by Feng, Wang, and Dai [14]. Meidl and
Winterhof [23] proved bounds for the joint linear complexity profile of a family
of multisequences generated by an inversive method.

4 Periodic Multisequences

The case of periodic sequences over Fq has received a lot of attention in the
theory of stream ciphers since all keystreams used in practice are periodic. We
recall that for a positive integer N , a sequence S with terms s0, s1, . . . in Fq is
called N -periodic if si+N = si for all i ≥ 0. Note that N need not necessarily
be the least period of the sequence. According to a classical formula (see e.g. [9,
Section 5.1.2]), the linear complexity L(S) of an N -periodic sequence S over Fq

is given by
L(S) = N − deg(gcd(xN − 1, SN(x))), (5)

where SN (x) := s0 +s1x+ · · ·+sN−1x
N−1 ∈ Fq[x]. Another description of L(S)

for an N -periodic sequence S over Fq is possible by means of the generalized
discrete Fourier transform and the Günther-Blahut theorem (see [19], [21]).

An important question for stream ciphers is the following: if we pick an N -
periodic sequence over Fq at random, what is the expected linear complexity? For
fixed q and N ≥ 1, the number of N -periodic sequences over Fq is equal to qN .
In the canonical stochastic model where all these qN sequences are considered
equally likely, the expected value GN of the linear complexity is given by

GN =
1
qN

∑
S

L(S),

where S runs through all N -periodic sequences over Fq. The first general formula
for GN was stated by Dai and Yang [6] without proof. Later, a detailed proof of
an equivalent formula was given by Meidl and Niederreiter [21]. These formulas
correspond to the special case m = 1 of the formulas in (7) and Theorem 6,
respectively, given below.

These considerations can be generalized to periodic multisequences. If S =
(S1, . . . , Sm) is an m-fold multisequence over Fq with each sequence Sj, j =
1, . . . ,m, being periodic, then we can assume w.l.o.g. that the sequences Sj have
the common period N . We say in this case that S is N -periodic. The analog of
(5) is the formula

L(m)(S) = N − deg(gcd(xN − 1, SN
1 (x), . . . , SN

m(x))) (6)



The Probabilistic Theory of the Joint Linear Complexity of Multisequences 13

for the joint linear complexity L(m)(S) of S, where SN
j (x) is the polynomial

corresponding to the sequence Sj for j = 1, . . . ,m (see [22]). It is a trivial
consequence of the definition and follows also from (6) that for any m-fold N -
periodic multisequence S over Fq we have L(m)(S) ≤ N .

Let G(m)
N denote the expected value of the joint linear complexity of m-fold

N -periodic multisequences over Fq, that is,

G
(m)
N =

1
qmN

∑
S

L(m)(S)

with the sum being extended over all qmN m-fold N -periodic multisequences
S over Fq. Meidl and Niederreiter [22] established a formula for G(m)

N by using
the generalized discrete Fourier transform for multisequences and cyclotomy. We
recall that if w ≥ 1 and l are integers with gcd(w, q) = 1, then the cyclotomic
coset Cl mod w (relative to powers of q) is defined by

Cl = {0 ≤ k ≤ w − 1 : k ≡ lqr(mod w) for some integer r ≥ 0}.

The different cyclotomic cosets mod w form a partition of the set {0, 1, . . . , w−1}.

Theorem 6. Let N = pvw, where the prime p is the characteristic of Fq and
the integers v and w satisfy v ≥ 0, w ≥ 1, and gcd(p, w) = 1. Let B1, . . . , Bh be
the different cyclotomic cosets mod w and put bi = |Bi| for 1 ≤ i ≤ h. Then for
any m ≥ 1,

G
(m)
N = N −

h∑
i=1

bi(1− q−mbip
v

)
qmbi − 1

.

An equivalent formula for G(m)
N was later noted by Fu, Niederreiter, and Su [15,

Remark 2]. Let φ be Euler’s totient function and for any positive integer d with
gcd(d, q) = 1 let κ(d) be the order of q mod d, i.e., the least positive integer e
such that qe ≡ 1 (mod d). Then we have

G
(m)
N = N −

∑
d|w

φ(d)(1 − q−mκ(d)pv

)
qmκ(d) − 1

, (7)

where the sum is over all positive divisors d of w and where p, v, and w are as
in Theorem 6. For m = 2 the formula (7) leads to the lower bound

G
(2)
N ≥ N −O(log log(w + 2))

with an absolute implied constant. For m ≥ 3 we obtain

G
(m)
N ≥ N −O(1)

with an absolute implied constant. We refer to [15, Remark 3] for proofs of
these lower bounds. Further investigations on expected values of the joint linear
complexity of periodic multisequences can be found in Meidl [20].
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By more involved arguments, Fu, Niederreiter, and Su [15] were also able to
obtain an expression for the variance W

(m)
N of the joint linear complexity of

m-fold N -periodic multisequences over Fq.

Theorem 7. With the notation in Theorem 6, we have for any m ≥ 1,

W
(m)
N =

h∑
i=1

b2i
(2pv + 1)(apv+2

i − apv+1
i )− a2pv+2

i + ai

(1− ai)2
,

where ai = q−mbi for 1 ≤ i ≤ h.

In [15, Remark 4] an alternative formula for W (m)
N is given which bears the same

relationship to Theorem 7 as (7) bears to Theorem 6. For m = 1 this alternative
formula was stated without proof by Dai and Yang [6]. The following bounds
are shown in [15]: for m = 2 we have

W
(2)
N = O((log(w + 1)) log log(w + 2))

with an absolute implied constant and for m ≥ 3 we have W (m)
N = O(1) with an

absolute implied constant.
The results in this section show that for random m-fold N -periodic multise-

quences over Fq, the joint linear complexity is close to N — which is the trivial
upper bound on the joint linear complexity — with a small variance.
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1 Introduction

Pseudorandom sequences have a wide applications. In stream ciphers, the key
stream usually is a pseudorandom sequence over a finite field Fq:

α = (a1, a2, · · · , ai, · · · ), ai ∈ Fq

In the recent years, multi-sequences:

r =

⎛⎜⎜⎜⎝
r1
r2
...
rm

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
r1,1 r1,2 · · · r1,n · · ·
r2,1 r2,2 · · · r2,n · · ·
...

...
...

rm,1 rm,2 · · · rm,n · · ·

⎞⎟⎟⎟⎠ ,

where rj,i ∈ Fq , 1 ≤ j ≤ m and i ≥ 1, are applied to the design of stream
ciphers. The appearance of such kind of stream ciphers stimulates the study of
multi-sequences. One of the interested problem is that on their linear complexity.

A sequence α can be identified to a formal power series:

α = a1z
−1 + a2z

−2 + · · ·+ aiz
−i + · · ·

The problem on the linear complexity of sequences is essentially the optimal
rational approximation problem of formal power series.

Continued fraction [1,3,4,5] is a useful tool in dealing with optimal rational
approximation problems. It is well-known that the simple continued fraction
expansion of a single real number gives the optimal rational approximations.
Many people have contrived to construct multidimensional continued fraction
in dealing with the rational approximation problem for multi-reals. One con-
struction is the Jacobi-Perron algorithm (JPA) see [6]. This algorithm and its
modification are extensively studied [7,8,9,10]. These algorithms are adapted to
study the same problem for multi-formal Laurent series [11,12]. But none of
these algorithm guarantee optimal rational approximation in general.

Recently we proposed an algorithm [13,14], which realizes the optimal ratio-
nal approximation (ORA) of multi-formal power series (multi-series, in short).
� This work is partly supported by NSFC (Grant No. 60473025 and 90604011).
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We call it the multi-universal continued fraction algorithm (m-UCFA, in short).
It can produce all possible continued fraction expansions (CFE) for each multi-
series r. Here by a CFE C of r we mean C provides the ORA of r. We made two
specialization of m-UCFA. One is called the multi-continued fraction algorithm
(m-CFA, in short), which is the simplest one in the operation, but it seems that
there is no way to characterize the set of all possible outputs of m-CFA, and an-
other is called the multi-strict continued fraction algorithm (m-SCFA, in short),
which is the most significant in many applications since it has the advantage that
its output set can be characterized. In this talk, for easy understanding, we first
introduce m-CFA, then m-UCFA and m-SCFA, and finally their applications to
sequences.

2 Linear Complexity and Optimal Rational
Approximation

The formal power series are special formal Laurent series, and the latter make
a field called formal Laurent series:

F ((z−1)) =

⎧⎨⎩∑
i≥t

aiz
−i

∣∣∣∣∣∣ t ∈ Z
⎫⎬⎭

where F is an arbitrary field. In order to introduce the m-CFA, here we start
with the arithmetic operations and concepts in F ((z−1)).

For any given α ∈ F ((z−1)):

α = atz
−t + at+1z

−t−1 + · · ·+ a−1z + a0 + a1z
−1 + a2z

−2 + · · ·+ aiz
−i + · · ·

define

�α	 = atz
−t + at+1z

−t−1 + · · ·+ a−1z + a0

{α } = a1z
−1 + a2z

−2 + · · ·+ aiz
−i + · · ·

which are called the polynomial part and the remaining part of α respectively,
and

v(α) =
{

min { i | ai 
= 0 } if α 
= 0
∞ if α = 0

which is called the valuation of α.

Fact 2.1. That a sequence α = { ak }k≥1 satisfies a linear recurrence c =
(c0, c1, · · · , cl−1) can be stated by means of formal series as follow:

α · f(z) = p(z) ∈ F [z] ⊂ F ((z−1))

Hence
α =

p(z)
f(z)

∈ F (z) ⊂ F ((z−1))
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where l is a positive integer, F [z] and F (z) are the polynomial ring and the
fraction field over F respectively, and

α =
∑
i≥1

aiz
−i

f(z) = zl +
l−1∑
i=0

ciz
i

p(z) = �α · f(z)	

For any given positive integer n, denote by α(n) the prefix of α of length n:
(a1, a2, · · · , an). The l-tuple c = (c0, c1, · · · , cl−1) is called an l-level linear rela-
tion of α(n) if

al+k = cl−1al+k−1 + cl−2al+k−2 + · · ·+ c0ak, 1 ≤ k ≤ n− l
The smallest level among the linear relations of α(n) is called the linear com-

plexity (LC) of αn, and the corresponding linear relation is called a minimal
relation, the corresponding polynomial

f(z) = zl +
l−1∑
i=0

ciz
i

is called a minimal polynomial of α(n). Denote by ln and fn(z) the linear com-
plexity and a minimal polynomial of α(n) respectively. Then { ln }n≥1 is called
the linear complexity profile of α and { fn }n≥1 a minimal polynomial profile.

Definition 2.2. We say
g(z)
f(z)

is an optimal rational approximant of the series

α, and f(z) is an optimal denominator of α, if for an arbitrary rational fraction
p(z)
q(z)

, it satisfies⎧⎪⎪⎨⎪⎪⎩
v(α − p(z)

q(z)
) < v(α − g(z)

f(z)
) if deg(q(z)) < deg(f(z))

v(α − p(z)
q(z)

) ≤ v(α − g(z)
f(z)

) if deg(q(z)) = deg(f(z))

Fact 2.3. If
g(z)
f(z)

is an optimal rational approximant of α, then g(z) = �αf(z)	.

Proposition 2.4 (Relation between ORA and LC). If f(z) is an optimal
denominator of α and

v(α− �αf(z)	
f(z)

) = n+ 1

then ⎧⎨⎩
deg(f(z)) = ln
ln < ln+1

f(z) is a minimal polynomial of α(n)

And vice versa.
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As for multi-sequences, we first introduce the concept of the order on Zm × Z,
where Zm = { 1, 2, · · · ,m }.

Definition 2.5 (Linear order on Zm × Z). For any (j, n) and (j′, n′) in
Zm × Z, define (j, n) < (j′, n′) if and only if n < n′ or n = n′ but j < j′.

For any given multi-sequence r and integers j and n, where 1 ≤ j ≤ m and
n ≥ 1, we denote by r(j,n) by the prefix of r of length (j, n):

r(j,n) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

r
(n)
1

· · ·
r
(n)
j

r
(n−1)
j+1

· · ·
r
(n−1)
m

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝
r1,1 r1,2 · · · r1,n−1 r1,n

· · · · · · · · · · · ·
rj,1 rj,2 · · · rj,n−1 rj,n

rj+1,1 rj+1,2 · · · rj+1,n−1

· · · · · · · · · · · ·
rm,1 rm,2 · · · rm,n−1

⎞⎟⎟⎟⎟⎟⎟⎠
We say an l-tuple c = (c0, c1, · · · , cl−1) is a linear relation of r(j,n) if it is a linear
relation of both r

(n)
h for 1 ≤ h ≤ j and r

(n−1)
h for j < h ≤ m.

The smallest level among the linear relations of r(j,n) is called the linear com-
plexity (LC) of r(j,n), and the corresponding linear relation is called a minimal
relation, the corresponding polynomial

f(z) = zl +
l−1∑
i=0

ciz
i

is called a minimal polynomial of r(j,n). Denote by lj,n and fj,n(z) the linear com-
plexity and a minimal polynomial of r(j,n) respectively. Then { lj,n }(j,n)≥(1,1) is
called the linear complexity profile of α and { fj,n }(j,n)≥(1,1) a minimal polyno-
mial profile.

A multi-sequence r can be identified to a multi-series:

r =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∑
i≥1

r1,iz
−i∑

i≥1

r2,iz
−i

...∑
i≥1

rm,iz
−i

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

∑
1≤j≤m, i≥1

rj,iz
−iej

where ej = (0, · · · , 0,
j

1, 0, · · · , 0)τ is the j-th standard basis, τ means transport.
r can be viewed as a column vector in the vector space F ((z))m of dimension m.

Definition 2.6 (Support set and maximal support point). For any
r =

∑
1≤j≤m, i≥t

aj,iz
−iej ∈ F ((z−1))m, define

Supp(r) = { (j, i) | rj,i 
= 0, 1 ≤ j ≤ m, i ≥ t }
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and call it the support set of r. If Supp(r) is a finite set, we call

Supp+(r) = maxSupp(r)

the maximal support point of r.

Definition 2.7 (Indexed valuation). For any r ∈ F ((z−1))m, let

(h, v) = minSupp(r)

We call (h, v) the indexed valuation of r, denoted by Iv(r), h the index of r,
denoted by I(r), and v the valuation of r, denoted by v(r). By convention,
Iv(0) = (1,∞) and v(0) =∞, where 0 ∈ F ((z−1))m.

For any r ∈ F ((z))m, denote

�r	 = (�(	r1), �r2	, · · · , �rm	)τ

{ r } = ({ r1 } , { r2 } , · · · , { rm })τ

and call them the polynomial part and the remaining part of r respectively.

Definition 2.8. Given g(z) = (g1(z), g2(z), · · · , gm(z))τ ∈ F [z]m and f(z) ∈

F [z]. We say
g(z)
f(z)

is an optimal rational approximant of r and deg(f(z)) is an

optimal denominator degree if for any rational fraction
p(z)
q(z)

, it satisfies

⎧⎪⎪⎨⎪⎪⎩
Iv(r −

p(z)
q(z)

) < Iv(r −
g(z)
f(z)

) if deg(q(z)) < deg(f(z))

Iv(r −
p(z)
q(z)

) ≤ Iv(r −
g(z)
f(z)

) if deg(q(z)) = deg(f(z))

Proposition 2.9 (Relation between ORA and LC). If f(z) is an optimal
denominator of r and

Iv(r − �rf(z)	
f(z)

) = (j, n)+

then ⎧⎨⎩
deg(f(z)) = lj,n
lj,n < l(j,n)+

f(z) is a minimal polynomial of r(j,n)

where (j, n)+ means the successive element of (j, n) in Zm × Z, i.e.,

(j, n)+ =
{

(j + 1, n) if 1 ≤ j < m
(1, n+ 1) if j = m

And vice versa.
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Definition 2.10. We say a rational fraction sequence {
p

k
(z)

qk(z)
}0≤k≤μ, μ = ∞

or μ < ∞, is an optimal rational approximation profile of r if it satisfies the
following conditions:

1. Each
p

k
(z)

qk(z)
is an optimal rational approximant of r, and deg(qk(z)) <

deg(qk+1(z)) for all k’s.
2. If d is an optimal denominator degree, then d = deg(qk(z)) for some k.

Correspondingly, we call the sequence {deg(qk(z))}0≤k≤μ the optimal denomina-

tor degree profile, and the sequence {Iv(r −
p

k
(z)

qk(z)
)}0≤k≤μ the optimal precision

profile of r. It is clear that p
0
(z) = 0 and q0(z) = 1 for every multi-series.

3 Multi-Continued Fraction Algorithm

Input: r ∈ F ((z−1))m, v(r) > 0.
Initially, set

α0 = r

D0 = Im = Diag(· · · , z−c0,j , · · · ), c0,j = 0, 1 ≤ j ≤ m

Suppose {
Dk−1 = Diag(· · · , z−ck−1,j , · · · )
αk−1 = (· · · , αk−1,j , · · · )τ

have been obtained for k(≥ 1). Then the computation for the k-th round are
defined by the following two steps:

1. Take inverse: ρ
k

= (· · · , ρk,j , · · · )τ , where

ρk,j =

⎧⎪⎨⎪⎩
αk−1,j

αk−1,hk

if j 
= hk

1
αk−1,hk

if j = hk

and
hk = I(Dk−1αk−1)

2. Take polynomial part: {
ak = �ρ

k
	

αk = ρ
k
− ak

Let μ = k if αk = 0, and the algorithm terminates; otherwise, take
Dk = Diag(· · · , z−ck,j , · · · ), where

ck,j =
{
ck−1,j if j 
= hk

v(Dk−1αk−1) if j = hk



Multi-Continued Fraction Algorithms and Their Applications to Sequences 23

and go to the next round if αk 
= 0. Let μ = ∞ if the above procedure never
terminates.

The output of the m-CFA on input r, denoted by m-CFA(r), is a sequence
pair C = (h, a), where {

h = { hk }1≤k≤μ , 1 ≤ hk ≤ m

a = { ak }1≤k≤μ , ak ∈ F [z]m

which provides optimal rational approximation to r by the following procedures.
In the sequel, we will call any (h, a) an HA-pair of length μ if{

h = { hk }1≤k≤μ , 1 ≤ hk ≤ m

a = { ak }1≤k≤μ , ak ∈ F [z]m

Definition 3.1. Let C = (h, a) be an HA-pair of length μ. Define

d(C) = { dk }0≤k≤μ

n(C) = {nk }0≤k≤μ

Q(C) = {
p

k

qk
}
0≤k≤μ

where

dk =
∑

1≤i≤k

ti, d0 = 0

ti = deg(ai,hi)
nk = dk−1 + vk

vk = vk,hk

vk,j =
∑

1≤i≤k
hi=j

ti, 1 ≤ j ≤ m

(
p

k

qk

)
= Bk

(
0
1

)
, p

k
∈ F [z]m, qk ∈ F [z]

Bk = Bk−1Ehk
A(ak), B0 = Im+1

Ehk
=

⎛⎜⎜⎝
I

0 1
I

1 0

⎞⎟⎟⎠ → hk

↓
hk

A(ak) =
(
Im ak

0 1

)
Theorem 3.2. For any given multi-series r, let C = (h, a) = m-CFA(r). Then

1. The sequence Q(C) = {
p

k

qk
}
0≤k≤μ

is an optimal rational approximation

profile of r. As a consequence, when μ =∞, Q(C) is convergent.∗ Denote



24 Z. Dai

limQ(C) =

⎧⎪⎨⎪⎩
p

μ

qμ
if μ <∞

lim
k→∞

p
k

qk
if μ =∞

Then r = limQ(C).
2. The sequence d(C) is the optimal denominator degree profile of r.
3. The sequence (h, n(C)) is the optimal precision profile of r.

Remark∗: Here we say that a sequence {xk}k≥0 in F ((z−1))m is convergent if
there exists an element x ∈ F ((z−1))m (called the limit of the sequence) such that
for any (h, v) ∈ Zm×Z, there is a positive integer k0 such that Iv(xk−x) ≥ (h, v)
whenever k ≥ k0.

Corollary 3.3. For any given multi-series r, Denote C = (h, a) = m-CFA(r).
Let

lj,n = dk, (hk, nk) ≤ (j, n) < (hk+1, nk+1)
fj,n = qk, (hk, nk) ≤ (j, n) < (hk+1, nk+1)

Then { lj,n }(j,n)≥(1,1) is the linear complexity profile of r and { fj,n }(j,n)≥(1,1)

is a minimal polynomial profile of r.

From Theorem 3.2 we see that for any multi-sequence r, the output of the m-CFA
on input r shows up its linear structure completely.

Remark: When m = 1, the m-CFA is exactly the classical continued fraction
algorithm [2,6] for formal power series. In fact, when m = 1, we have hk = 1 for
all k’s. Hence the computation for both hk and Dk are unnecessary. Now the
1-CFA is as follows (we write r = r and ak = ak): Initially, set a0 = 0, α0 = r.
Suppose αk−1 
= 0 has been obtained. The computation for the k-th round are
defined by the following steps:

1. Take the inverse: ρk = α−1
k−1;

2. Take ak = �ρk	 and αk = ρk − ak.

If αk = 0, set μ = k, and the algorithm terminates. Define μ =∞ if the above
procedure never terminates.

Comparisons among JPA, MJPA and m-CFA: The basic construction of
m-CFA is the same as JPA or MJPA. It is an iterative algorithm, and consists
of two steps for each round. One step is computing inverse, and another step
is taking the polynomial and the remaining part. The main point that m-CFA
is different from JPA or MJPA is the way of computing inverse at each round.
In JPA, the way of computing the inverse at every round is never changed, as
shown below:

ρk,j =

⎧⎨⎩
αk−1,j+1

αk−1,1
if j 
= m

1
αk−1,1

if j = m
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In MJPA, the way of computing the inverse at every round is not unchanged. In
fact, it depends on the parameter hk, just like the m-CFA, but the definition of
index hk in MJPA is different to that in m-CFA, as shown below:

ρk,j =

⎧⎨⎩
αk−1,j

αk−1,hk

if j 
= hk

1
αk−1,hk

if j = hk

where

hk =
{
I(αk−1) in MJPA
I(Dk−1αk−1) in m-CFA

It has been proved that in m-CFA

I(Dk−1αk−1) = I(L(h1,−α0) · · ·L(hk−1,−αk−2)αk−1)

where L(h,−α) is a matrix of order m of the following form:

L(h,−α) =

⎛⎝ Ih−1

−α
Im−h

⎞⎠
↓
h

In MJPA, hk depends only on the k-th remainder αk−1; to compare with MJPA,
in m-CFA, the index hk depends on all indices and all remainders appeared at
the first k − 1 rounds.

4 Multi-Universal Continued Fraction Algorithm

We call a sequence pair (h, a) a continued fraction expansion of a multi-series
r, or just call it a multi-continued fraction, if it has the same properties as m-
CFA(r), i.e., the three properties expressed in Theorem 3.2. We consider the
following questions:

1. (Uniqueness?) Whether the CFE of a multi-series r is unique?

If NOT, then we have the next two questions:

2. (Generating) Given multi-series r, how to generate all its CFEs?
3. (Characterization) How to characterize the set of all multi-continued

fractions?

The following example gives a negative answer to the first problem.

Example 4.1. Let m = 2 and

r =
(
r1
r2

)
=
( z3

z5+1
1

z7+z2

)
∈ F2((z−1))2
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Then one can check both

C =
[

1 1 2(
z2

0

) (
z3

0

) (
0
z2

)]
and

C′ =
[

1 1 2(
z2

0

) (
z3+z2

0

) (
z4

z2

)]
are the CFEs of r.

For the question on generating, we proposed the following algorithm, the multi-
universal continued fraction algorithm (m-UCFA, in short). It is a
non-deterministic algorithm.

m-UCFA:
Input: r ∈ F ((z−1))m, v(r) > 0.
Initially, set

α0 = r

D0 = Im = Diag(· · · , z−c0,j , · · · ), c0,j = 0, 1 ≤ j ≤ m

Suppose {
Dk−1 = Diag(· · · , z−ck−1,j , · · · )
αk−1 = (· · · , αk−1,j , · · · )τ

have been obtained for k(≥ 1). Then the computation for the k-th round are
defined by the following two steps:

1. Take inverse: ρ
k

= (· · · , ρk,j , · · · )τ , where

ρk,j =

⎧⎪⎨⎪⎩
αk−1,j

αk−1,hk

if j 
= hk

1
αk,hk

if j = hk

and
hk = I(Dk−1αk−1)

2. Take polynomial part: {
ak = �ρ

k
	 − εk

αk = ρ
k
− ak

where εk ∈ F [z]m such that

Iv(Dk { ρk
}) < Iv(Dkεk)

where ⎧⎨⎩
Dk = Diag(· · · , z−ck,j , · · · )

ck,j =
{
ck−1,j if j 
= hk

v(Dk−1αk−1) if j = hk
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Let μ = k if α = 0, and the algorithm terminates; otherwise, go to the next
round if α 
= 0. Let μ =∞ if the above procedure never terminates.

The output of m-UCFA on input r is non-deterministic. Denote by m-UCFA(r)
the set of all possible outputs.

Theorem 4.2 (Generating). Let C = (h, a) be an HA-pair and r be a multi-
series. Then C is a CFE of r if and only if C is a possible output of m-UCFA
on the input r.

Theorem 4.3 (Characterization). Let C = (h, a) be an HA-pair of length μ.
Then C is a multi-continued fraction if and only if it satisfies the following three
properties:

1. tk ≥ 1 for 1 ≤ k ≤ μ;
2. (hk, vk − tk) < (hk+1, vk+1) for 1 ≤ k < μ;
3. Iv(Δkak) = (hk, vk−tk) for 1 ≤ k ≤ μ, where Δk = Diag(z−vk,1 , z−vk,2 , · · · ,

z−vk,m).

5 Multi-Strict Continued Fraction Algorithm

Furthermore, we consider a question: whether one may choose one and only
one CFE for each multi-series r such that it can be generated by a determin-
istic algorithm and the set of all these chosen multi-continued fractions can be
characterized.

The set of all classical continued fractions does contain one and only one CFE
for each multi-series, but it seems there is no way to characterize the set made
of them, though they can be generated by m-CFA. For solving this question, we
propose an algorithm, the multi-strict continued fraction algorithm (m-SCFA,
in short). It is a deterministic algorithm:

m-SCFA:
Input: r ∈ F ((z−1))m, v(r) > 0.
Initially, set

α0 = r

D0 = Im = Diag(· · · , z−c0,j , · · · ), c0,j = 0, 1 ≤ j ≤ m

Suppose {
Dk−1 = Diag(· · · , z−ck−1,j , · · · )
αk−1 = (· · · , αk−1,j , · · · )τ

have been obtained for k(≥ 1). Then the computation for the k-th round are
defined by the following two steps:

1. Take inverse: ρ
k

= (· · · , ρk,j , · · · )τ , where

ρk,j =

⎧⎪⎨⎪⎩
αk−1,j

αk−1,hk

if j 
= hk

1
αk,hk

if j = hk
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and
hk = I(Dk−1αk−1)

2. Take polynomial part: {
ak = �ρ

k
	 − εk

αk = ρ
k
− ak

where if �ρ
k
	 =
∑

Ak,j,iz
iej , Ak,j,i ∈ F , Then

εk =
∑

(j, ck,j−i)>Iv(Dk{ ρ
k
}),1≤j≤m

Ak,j,iz
iej

and ⎧⎨⎩
Dk = Diag(· · · , z−ck,j , · · · )

ck,j =
{
ck−1,j if j 
= hk

v(Dk−1αk−1) if j = hk

Let μ = k if α = 0, and the algorithm terminates; otherwise, go to the next
round if α 
= 0. Let μ =∞ if the above procedure never terminates.

Denote by Sm the set of all multi-series of dimension m. For any r ∈ Sm,
denote by m-SCFA(r) the output of m-SCFA on input r. Let m-SCFA(Sm) be
the set of all possible outputs of m-SCFA with inputs in Sm. Then we have

Theorem 5.1. 1. For any r ∈ Sm, m-SCFA(r) is a CFE of r, which we call a
multi-strict continued fraction. As a consequence, there is a 1-1 correspon-
dence between Sm and m-SCFA(Sm).

2. Let C = (h, a) be an HA-pair of length μ. Then C ∈ m-SCFA (Sm) if and
only if it satisfies the following four properties:
(a) tk ≥ 1 for 1 ≤ k ≤ μ;
(b) (hk, vk − tk) < (hk+1, vk+1) for 1 ≤ k < μ;
(c) Iv(Δkak) = (hk, vk − tk) for 1 ≤ k ≤ μ;
(d) Supp+(Δkak) < (hk+1, vk+1) for 1 ≤ k ≤ μ.

Theorem 5.1 establishes a 1-1 correspondence between multi-series and the multi-
strict continued fraction by means of the m-SCFA, and characterize the set of
all multi-strict continued fractions.

Denote by S
(m,n) the set of all m-tuple of sequences of length n over the field

F , and by C(m,n) the set of all m-dimensional multi-strict continued fraction
fractions of finite length satisfying the following property:

Supp+(z−dμΔμaμ) ≤ (m,n) (5.1)

The sequence set S(m,n) is identified to a multi-series set in the natural way.
The following theorem shows that there is a 1-1 correspondence between the
sequence set S(m,n) and the multi-strict continued fraction set C(m,n). To show
the 1-1 correspondence, we need the concept of the (m,n)-prefix of an m-CF.



Multi-Continued Fraction Algorithms and Their Applications to Sequences 29

For any m-SCF C = (h, a) of length μ, the (h, n)-prefix of C, denoted by
C(h,n), is defined as:

C(h,n) =
[
h1 h2 · · · hw−1 hw

a1 a2 · · · aw−1 a
(h,n)
w

]
(5.2)

where w is determined by the following condition:

(hw, nw) ≤ (h, n) < (hw+1, nw+1)

where (hw+1, nw+1) = (1,∞) by convention if w = μ <∞, and a
(h,n)
k is defined

as below:
a
(h,n)
k =

∑
1≤j≤m

(j,dk+vk,j−i)≤(h,n)
ak,j,i �=0

ak,j,iz
iej (5.3)

Theorem 5.2. The mapping f :

f : r �→ C(m,n), ∀ r ∈ S
(m,n)

where C = m-SCFA(r), is injective from S(m,n) onto Cm,n, and its inverse is
the mapping:

f−1 : C �→ r(m,n), ∀ C ∈ C
(m,n)

where r = limQ(C).
As a consequence, for any given integer d, where 1 ≤ d ≤ n, let

S
(m,n)(d) =

{
r ∈ S

(m,n)
∣∣∣ L(r) = d

}
C

(m,n)(d) =
{
C ∈ C

(m,n)
∣∣∣ d(C) = d

}
where d(C) denotes dμ, μ is the length of C, and L(r) denote the linear com-
plexity of r. Then restricted on the set S(m,n)(d), the mapping f establishes a 1-1
correspondence between S

(m,n)(d) and C
(m,n)(d).

6 Applications

6.1 Proof of the Fact That JPA or MJPA Can’t Guarantee Optimal
Rational Approximation

For any given multi-series r, assume we have the parameters associated to m-
CFA and MJPA as below:

m-CFA : C = m-CFA(r), Q(C) = { p
k

qk
}k≥0, h = {hk}, d = {dk}, n = {nk};

MJPA : Ĉ = MJPA(r), Q(Ĉ) = { p̂
k

q̂k
}k≥0, ĥ = {ĥk}, d̂ = {d̂k}, n̂ = {n̂k}.
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Based on multi-continued fraction theories, it is easy to see that

1. if there is some integer d̂i 
∈ {dk}k≥0, or
2. d̂i = dk but (ĥi+1, n̂i+1) 
= (hk+1, nk+1)

then
p̂

i

q̂i
is not the optimal rational approximant of r.

By a counterexample it is shown [24] that for r = (γ, γ2)τ both JPA and MJPA
can’t guarantee the optimal rational approximation to r, where γ is the root of
certain algebraic function of degree three over F [z] such that γ ∈ F ((z−1)).

6.2 From m-SCFA to GBMA

The well-known GBMA can be derived from the m-SCFA (see [17,18]). In par-
ticular, the minimal polynomial profile, denoted by { fj,n }(j,n)≥(1,1), and the
discrepancy profile, denoted by { δj,n }(j,n)≥(1,1), which are obtained by acting
GBMA on a multi-sequence r, are expressed explicitly by data associated to the
multi-strict continued fraction expansion of r respectively. In fact, let C = (h, a)
be the multi-strict continued fraction expansion of r. Denote ak =

∑
ak,j,iz

iej .
Then∑
(j,n)≥(1,1)

δj,nz
−nej = −πk,hk

z−nkehk
+

μ∑
k=1

z−dkΛkΔk(ak−ak,hk,tk
ztkehk

) (6.1)

where ⎧⎪⎪⎨⎪⎪⎩
Λk = Diag(· · · , πk,j , · · · )

πk,j =
∏

1≤i≤k, hi=j
ak,j,i �=0

(−ak,j,i)−1, 1 ≤ j ≤ m

and

fj,n = (0 1)Bk−1Ehk

(
a
(j,n)
k

1

)
(6.2)

In particular, when F = F2, we have∑
(j,n)≥(1,1)

δj,nz
−nej =

μ∑
k=1

z−dkΔkak (6.3)

6.3 d-Perfect Multi-sequences

In [19] Xing introduce the concept of d-perfect multi-sequences and bring forward
the following conjecture.

Conjecture 6.1 ([19]). Let r be a multi-sequence and d be an integer. If for
any positive integer n, it satisfies

ln ≥
m(n+ 1)− d

m+ 1
(6.4)
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Then

ln ≤
mn+ d

m+ 1
, ∀ n ≥ 1 (6.5)

where ln denotes the linear complexity of r(m,n).

Based on multi-continued fraction theories, we reduce the above conjecture to
the following combinatorial problem:

Equivalent form of Conjecture 6.1. For any given multi-sequence r, let
C be one of its continued fraction expansions. If there is an integer d such that

mnk+1 − d
m+ 1

≤ dk, ∀ k ≥ 0 (6.6)

then

dk ≤
mnk + d

m+ 1
, ∀ k ≥ 0 (6.7)

We demonstrate an example which disproves the above conjecture [23].

6.4 Expected Value of the Normalized Linear Complexity of
Multi-sequences

For any multi-sequence r and positive integer n, we call ln
n the normalized linear

complexity of r(m,n). Given integers m and n, denote by e(m,n) the expected
value of the normalized linear complexity of multi-sequences of dimension m and
length n. Then it can be expressed as

e(m,n) =
n∑

d=1

d

n

|S(m,n)(d)|
2mn

(6.8)

where |S(m,n)(d)| denotes the size of the set S(m,n)(d). As for the limit of e(m,n),
Niederreiter and Ding proposed the following conjecture:

Conjecture 6.2 ([19,20,21]). For any positive integers m and n, let e(m,n)
be defined as above. Then

lim
n→∞ e(m,n) =

m

m+ 1
(6.9)

By Theorem 5.2 we have

|S(m,n)(d)| = |C(m,n)(d)| (6.10)

The conjecture is proved for the case m = 2 in [25], and for the general case
later in [26] by evaluating the size of the multi-continued fraction set C(m,n)(d).

We should mention that the above conjecture has been proved earlier than [26]
for the general case in [22] by Niederreiter and Wang by using the lattice basis
reduction theory.
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6.5 Asymptotic Behavior of the Normalized Linear Complexity of
Multi-sequences

We once discussed the asymptotic behavior of the normalized linear complexity
of single sequences in [15] by means of classical continued fractions. For any
given multi-sequence r, based on multi-continued fraction theories, we obtain a
formula for lim sup

n→∞
ln
n together with a lower bound and a formula for lim inf

n→∞
ln
n

together with an upper bound, and provide a sufficient and necessary condition
on the existence of lim

n→∞
ln
n . For details, see [16].
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Abstract. There has been a recent upsurge of interest in applying Code
Division Multiple Access (CDMA) techniques to optical networks. Con-
ventional spreading codes for OCDMA, known as optical orthogonal
codes (OOC) spread the signal in the time domain only, which often
results in the requirement of a large chip rate. By spreading in both
time and wavelength using two-dimensional OOCs, the chip rate can be
reduced considerably. This paper presents an overview of 1-D and 2-D
optical orthogonal codes as well as some new results relating to bounds
on code size and code construction.

Keywords: Optical orthogonal codes, OOC, constant weight codes, op-
tical CDMA, OCDMA, 2-D OOC, MWOOC, wavelength time codes.

1 Introduction

Recently there has been an upsurge of interest in applying code division mul-
tiple access (CDMA) techniques to optical networks [1], at least in part due to
the increase in security afforded by optical CDMA (OCDMA) as measured for
instance, by the increased effort needed to intercept an OCDMA signal, and in
part due to the flexibility and simplicity of network control afforded by OCDMA.

As in conventional CDMA, each of the users in an optical CDMA system is
assigned a unique spreading code that enables the user to distinguish his signal
from that of the other users. In optical CDMA (OCDMA), the typical modula-
tion scheme used is On-Off Keying (OOK) and as a result, the spreading codes
are binary, with symbols in {0, 1}. These spreading codes are termed optical or-
thogonal codes (OOC). Traditionally, as in the case of wireless communication,
the spreading has been carried out in time and we will refer to this class of OOC
as one-dimensional OOCs (1-D OOCs).

One drawback of one-dimensional (1-D) OOCs is the requirement of a large
chip rate. For example, consider the situation when it is desired to assign codes
to 8 potential users, each transmitting data at 1 Gbit/sec of which at most 5
users are active at any given time. If one attempts to design a 1-D OOC to meet
this requirement, one will end up with a chip-rate on the order of 161 Gchips

G. Gong et al. (Eds.): SETA 2006, LNCS 4086, pp. 34–46, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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per second (Gcps) (See Example 1). By employing two-dimensional (2-D) OOCs
that spread in both wavelength and time, it turns out that the above requirement
can be met using a chip rate of just 6 Gcps.

Section 2 reviews bounds on the size of 1-D codes as well as some of the
better known code construction techniques. 2-D OOCs are introduced in Section
3. Bounds on the size of a 2-D OOC are treated in Section 4, while Section 5
presents a new construction technique based on the use of rational functions.

2 One-Dimensional Optical Orthogonal Codes

An (n, ω, κ) Optical Orthogonal Code (OOC) C where 1 ≤ κ ≤ ω ≤ n, is a
family of {0,1}-sequences of length n and Hamming weight ω satisfying:

n−1∑
k=0

x(k)y(k ⊕n τ) ≤ κ (1)

for every pair of sequences {x, y} in C whenever either x 
= y or τ 
= 0. We
have used ⊕n to denote addition modulo n. We will refer to κ as the maximum
collision parameter(MCP).

For a given set of values of n, ω, κ, let Φ(n, ω, κ), denote the largest possible
cardinality of an (n, ω, κ) OOC code.

2.1 Bounds on the Size of 1-D OOCs

If C is an (n, ω, κ) 1-D OOC, then by including every cyclic shift of each codeword
in C one can construct a constant weight code with parameters (n, ω, κ) of size
= n | C |. This observation allows us to translate the Johnson bounds A, B, C on
constant weight codes [2] [3] as well as the improvement of Johnson bound B due
to Agrell et. al. [4] and the improvement of Johnson bound C due to Moreno et.
al. [5] into bounds on the cardinality of an OOC. These are reproduced below:

Johnson Bound A:

Φ(n, ω, κ) ≤
⌊

1
ω

⌊
n−1
ω−1 · · ·

⌊
n−κ
ω−κ

⌋⌋⌋
:= JA(n, ω, κ), (2)

first noted by Chung, Salehi, and Wei in [6].
Improved Johnson Bound B: Provided ω2 > nκ

φ(n, ω, κ) ≤ min(1,
⌊

ω−κ
(ω2−nκ)

⌋
) := JB(n, ω, κ). (3)

The observation that Φ(n, ω, κ) ≤ 1 for ω2 > nκ first appears in [7], its
constant weight code equivalent is proved in [4].

Improved Johnson Bound C:

Φ(n, ω, κ) ≤
⌊

1
ω

⌊
n− 1
ω − 1

· · ·
⌊
n− (�− 1)
ω − (�− 1)

h

⌋
· · ·
⌋⌋

:= JC(n, ω, κ), (4)

where h = min(n− �,
⌊

(n− �)(ω − κ)
(ω − �)2 − (n− �)(κ− �)

⌋
),
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and, where � is any integer, 1 ≤ � ≤ κ− 1, such that (ω− �)2 > (n− �)(κ− �).
The Improved Johnson Bound B and C as applied to OOC appeared for the first
time, to the best of our knowledge in [5]. However the observation implicit in
the Improved Johnson Bound B that Φ(n, ω, κ) ≤ 1 for ω2 > nκ may be found
in [7].

Since Φ(n, ω, κ) denotes the largest possible size of a 1-D OOC, an OOC C of
size P is said to be optimal when P = Φ(n,w, κ) and asymptotically optimum if:
limn→∞ P

Φ(n,w,κ) = 1.

2.2 Constructions

There is a large literature on constructions of optical orthogonal code, see for
instance [6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,5].
Algebraic constructions for families of OOCs can be found in [6,7,8,9,12,20,28,
29,5]. Recursive constructions appear in [10,13,19,22,27]. Constructions specific
to a particular choice of weight parameter ω can be found in [16,15,17,18,21,23,
24, 25, 26]. Optimum constructions are known only for κ = 1 [6, 29, 16, 15, 17, 18,
21, 23, 24, 25] and κ = 2 [7, 26]. Constructions that are asymptotically optimum
can be found in [8, 9, 28].

Most papers on 1-D OOC only make use of Johnson Bound A. There are
examples of 1-D OOCs which do not achieve Johnson Bound A with equality,
which however, are optimal with respect to Johnson Bound B, see [5].

From the point of view of application to fiber-optic communications, a princi-
pal drawback of one-dimensional (1-D) OOCs is the requirement of a large chip
rate. We illustrate this with an example.

Example 1. Consider the situation where it is desired to assign codes to 8 poten-
tial users of which at most 5 users are active at any given time. We assume that
the data rate of each user is set to 1 Gbit/sec. A natural attempt at meeting this
requirement might be to set the maximum-collision parameter (MCP) κ equal
to 1 and set ω = 5 > (5− 1)κ where (5 − 1)κ, represents the maximum pos-
sible interference presented by the 4 other active users under a uniform power
assumption. When ω = 5 and κ = 1, the Johnson bound A (Equation (2)) yields

Φ(n, 5, 1) ≤
⌊

1
ω

⌊
n− 1
ω − 1

⌋⌋
≤ n− 1

ω(ω − 1)
,

from which it follows that
n− 1 ≥ 8× 5× 4

i.e., n ≥ 161. Thus in this case, the chip-rate must necessarily equal or exceed
161 G chips per second (Gcps) which is currently infeasible to implement. Even
if it were feasible to implement, the chip-rate is still large in relation to the data
rate supplied to each user. As we shall see, by spreading in both wavelength and
time, this chip-rate requirement can be reduced substantially.

A tabular listing of algebraically constructed OOCs appears in Table 1 of Ap-
pendix A. The codes appearing in this table can be used in the construction of
2-D OOCs which are based on 1-D OOCs (see [33]).



Codes for Optical CDMA 37

3 Two-Dimensional Optical Orthogonal Codes

The advent of Wavelength-Division-Multiplexing (WDM) and dense-WDM (D-
WDM) technology has made it possible to spread in both wavelength and time
[34]. The corresponding codes, are variously called, wavelength-time hopping
codes, and multiple-wavelength codes. Here we will refer to these codes as two-
dimensional OOCs (2-D OOCs).

A 2-D (Λ × T, ω, κ) OOC C is a family of {0, 1} (Λ × T ) arrays of constant
weight ω. Every pair {A,B} of arrays in C is required to satisfy:

Λ∑
λ=1

T−1∑
t=0

A(λ, t)B(λ, (t ⊕T τ)) ≤ κ (5)

where either A 
= B or τ 
= 0. We will refer to κ as the maximum collision
parameter(MCP). Note that asynchronism is present only along the time axis.

It can be shown that it is possible to construct a 2-D (Λ × T = 6 × 6, ω =
5, κ = 1) OOC of size 8. Figure 1 shows such a 2-D OOC. Thus in comparison
with the earlier 1-D OOC of Example 1 which required a chip-rate in excess of
161 Gcps, with this 2-D code, one can accommodate the same number of users
with a chip rate of 6 Gcps.

Practical considerations often place restrictions on the placement of pulses
within an array. With this in mind, we introduce the following terminology:

– arrays with one-pulse per wavelength (OPPW): each row of every (Λ× T )
code array in C is required to have Hamming weight = 1

– arrays with at most one-pulse per wavelength (AM-OPPW): here each row
of any (Λ × T ) code in C is required to have Hamming weight ≤ 1

– arrays with one-pulse per time slot (OPPTS): here each column of every
(Λ× T ) code array in C is required to have Hamming weight = 1

– arrays with at most one-pulse per time slot (AM-OPPTS): here each column
of any (Λ × T ) array in C is required to have Hamming weight ≤ 1.

Fig. 1. A (6 × 6,5,1) 2-D OOC. In this figure each row shows a different wavelength,
and each column is a different chip time.
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Fig. 2. All optical correlator

A simple means of implementing an optical correlator appears in Fig. 2. Each
rectangular box represents an optical filter implemented using for example either
a fiber-Bragg grating or an optical micro-resonator. This filter reflects light of
the wavelength shown alongside the box and allows light of all other wavelengths
to pass through. Filters placed further along the reflection path will suffer an
increased delay and in this manner, the placement of the filters can be adjusted
to bring the pulses of all the different wavelengths in the desired code matrix into
time alignment at the output of the correlator. Implicit in this implementation,
is the assumption that the desired code matrix satisfies both the AM-OPPW
and AM-OPPTS restrictions.

Constructions for frequency-hopping spreading codes [35,36,37,38,39,40] can
often be used to provide 2-D OOCs that satisfy the OPPTS or AM-OPPTS
restriction. Papers in the literature dealing with the design of 2-D OOCs include
[33, 41, 42, 43, 44, 45, 34, 46, 47, 48, 49, 50, 51, 52].

4 Bounds on the Size of a 2-D OCDMA Code

For a given set of values of Λ, T, ω, κ, let Φ(Λ×T, ω, κ), denote the largest possible
cardinality of a (Λ×T, ω, κ) 2-D OOC code. We define optimal and asymptotically
optimum 2-D OOCs as was done in the case of 1-D OOCs in Section 2.

4.1 Johnson Bound

If C is a (Λ × T, ω, κ) 2-D OOC, then by including every column-cyclic shift of
each codeword in C one can construct a constant weight code using any mapping
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that reorders the elements of a Λ×T array to form a 1-D string of length ΛT . The
resultant constant weight code has parameters (ΛT, ω, κ) and size = T | C |. This
observation allows us to translate bounds on constant weight codes to bounds
on 2-D OOCs as it is done in Section 2:

We shall refer to these bounds as Johnson bounds for unrestricted 2-D OOCs.
They are given by:

Johnson Bound A:

Φ(Λ × T, ω, κ) ≤=
⌊
Λ

ω

⌊
ΛT − 1
ω − 1

· · ·
⌊
ΛT − κ
ω − κ

⌋⌋⌋
:= JA(Λ× T, ω, κ) (6)

This bound was first pointed out by Yang, and Kwong in [34].
Improved Johnson Bound B: Provided ω2 > ΛTκ

Φ(Λ × T, ω, κ) ≤= min(Λ,
⌊
Λ(ω − κ)
(ω2 − nκ)

⌋
) := JB(Λ× T, ω, κ). (7)

Improved Johnson Bound C:

Φ(Λ× T, ω, κ) ≤=
⌊

Λ
ω

⌊
ΛT−1
ω−1 · · ·

⌊
ΛT−(�−1)
ω−(�−1) h

⌋
· · ·
⌋⌋

:= JC(Λ× T, ω, κ), (8)

where h = min(ΛT − �,
⌊

(ΛT−�)(ω−κ)
(ω−�)2−(ΛT−�)(κ−�)

⌋
)

and where � is any integer, 1 ≤ � ≤ κ− 1, such that (ω− �)2 > (ΛT − �)(κ− �).

Theorem 1. When n = ΛT the bound Ji, i ∈ {A,B,C} on the size of a (Λ ×
T, ω, κ) 2-D OOC satisfies the following inequality compared to the bound on the
size of (ΛT, ω, κ) 1-D OOC:

ΛJi(ΛT, ω, κ) ≤ Ji(Λ× T, ω, κ) ≤ ΛJi(ΛT, ω, κ) + (Λ − 1)

where Ji(ΛT, ω, κ) denotes the upper bound for 1-D OOC stated in equations
(2),(3),(4), and Ji(Λ × T, ω, κ) denoted the upper bound for 2-D OOC stated in
equations (6),(7),(8).

Roughly speaking the theorem suggests that by going to 2-D case, we gain an
increase in family size by a factor of Λ.

4.2 Bounds on 2-D AM-OPPW OOCs

Theorem 2. For any maximally one pulse per wavelength OOC C:

ΦAM−OPPW (Λ× T, ω, κ) ≤
⌊
Λ

ω

⌊
T (Λ− 1)
ω − 1

· · ·
⌊
T (Λ− κ)
ω − κ

⌋⌋⌋
For the special case, Λ = ω, i.e., for the case when there is exactly one pulse per
wavelength, the bound in the Theorem above reduces to

Φ(Λ × T, ω, κ) ≤ T κ

which is the Singleton bound.
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5 2-D OOC Code Construction Using Rational Functions

A 2-D OOC can be regarded as the graph of a function λ = f(t), 0 ≤ t ≤ T − 1,
0 ≤ λ ≤ Λ − 1 mapping time into wavelength or vice-versa, t = f(λ). We de-
fine an operator Sτ such that Sτ (·, f(·)) is a τ unit cyclic shifted version of the
graph, (·, f(·)), along the time axis, t. By this definition the construction is a
valid OOC with MCP equal to κ iff the equation Sτ (x, f(x)) = (x, g(x)) has
maximally κ solutions for any f and g when either f 
= g or τ 
= 0. Both poly-
nomial and rational functions can be used as the functions f(·). Constructions
employing polynomials were reported in [33]. Here we report on rational function
constructions.

5.1 Preliminaries

A function of the form f(x)
g(x) in which both f(x) and g(x) are polynomial func-

tions over GF (q) is called a rational function over GF (q). We assume that f
and g are relatively prime and that both numerator and denominator are not
simultaneously equal to 0 for any value of x.

Since both f(x) and g(x) can take any value in GF (q) (apart from f(x) =
g(x) = 0) the value of the rational function will be of the form a

b with a, b ∈
GF (q), either a 
= 0 or b 
= 0. The fraction a

0 is permissible and we define this
fraction to equal the symbol ∞. It is shown in [9] that:

Lemma 1. The number of rational functions f(x)
g(x) satisfying:

– f and g are both nonzero and of degree ≤ t,
– f and g are relatively prime,
– f(x)

g(x) 
= a, for any a and
– f is monic.

is given by:

c(t) =

{
q2t+1 − q, t = 1, 2, 3, 4, 5, 6
≥ q2t+1 − q2t−6/7, t ≥ 7

It will be found convenient to identify the pair of symbols (f(x), g(x)) for given
x ∈ GF (q) with the element [f(x), g(x)]t in two-dimensional projective geometry
P1(GF (q)) over GF (q). We have that

P
1(GF (q)) =

{[
a

b

]
|a, b ∈ GF (q) and

[
a

b

]

=
[
0
0

]}
Two elements

[
a
b

]
,
[
c
d

]
∈ P1(GF (q)) are equal provided that there exists an ele-

ment η ∈ GF (q) such that
[
a
b

]
= η
[
c
d

]
.

Theorem 3. If f(x) = x2 + a1x + a0 with a1, a0 ∈ GF (q) is a primitive poly-
nomial over GF (q), then

Γ =
[

0 −a0

1 −a1

]
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is a matrix having the property that the smallest exponent i for which Γ i[a, b]t =
η[a, b]t for some η ∈ GF (q), is i = (q + 1).

It follows that the elements of P1(GF (q)) can be arranged so as to form an orbit
of size (q + 1):

P
1(GF (q)) =

{
Γ i

[
a

b

]
|i = 0, 1, · · · , q;

[
a

b

]
∈ P

1(GF (q))
}

5.2 Constructions

All of the constructions below employ rational functions f(x)
g(x) satisfying the condi-

tions of Lemma 1 with both f(x) and g(x) of degree ≤ κ′. In these constructions,
we have κ = 2κ′.

Mapping Wavelength to Time, T = q + 1, q a Power of a Prime: Let
1 ≤ Λ ≤ q, and λ ∈ some subset of GF (q) of size Λ. Here we consider rational
functions f(λ)

g(λ mapping wavelength into time. Associate to each time slot t, the
tth element of a cyclic representation of P1(GF (q)). Let us define:

Γ

(
f(x)
g(x)

)
= N

(
−a0g(x)

f(x)− a1g(x)

)
where, given a rational function, the operator N divides out the common factors
between numerator and denominator and in addition, scales the two so as to
make the numerator monic [9].

Considering f and g are relatively prime, and a0 
= 0, it is obvious that the
operator N results in some rational function which satisfies the conditions of
Lemma 1.

We need to discard all rational functions which are of the form:

f(x)
g(x)

= Γ k

(
f(x)
g(x)

)
0 < k ≤ q

We note that such a rational function doesn’t exist since it means that for a
certain x0, [f(x0), g(x0)]t = Γ k[f(x0), g(x0)]t for some 0 < k ≤ q which is impos-
sible by Theorem 3. Amongst the functions satisfying the conditions of Lemma
1, we have discarded all constant functions, but as this step is unnecessary here,
we can add them back.

For any 0 ≤ k ≤ q, we declare two rational functions f(x)
g(x) , Γ

k f(x)
g(x) to be

equivalent. Then the different code matrices correspond to choosing precisely one
polynomial from each equivalence class. For each polynomial f(·) the (Λ×T ) code
array C is given by C(λ, t) = 1 iff f(λ)

g(λ) = t. This results in a (Λ× (q+ 1), Λ, 2κ′)

2-D OOC with size c(κ′)
q+1 + 1, and κ = 2κ′ ≤ Λ ≤ q.
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Mapping Time to Wavelength, Λ = q + 1, q a Power of a Prime: Let
T | (q − 1), and β ∈ GF (q) have multiplicative order T . Take the wavelengths
as P1(GF (q))(the order of elements doesn’t matter). Here we consider rational
functions mapping time into wavelength. Let us associate to time slot t, the
element βt. We define two rational functions f1(x)

g1(x) ,
f2(x)
g2(x) in Fκ to be equivalent

if f1(βix)
g1(βix) = f2(x)

g2(x) for some i ∈ ZT . First discard all rational functions f(x)
g(x) , which

satisfy f(βix)
g(βix) = f(x)

g(x) for i 
= 0. The number of remaining rational functions is
computed in [9] as:

∑
i|(q−1) μ(i)c

(⌊
t
i

⌋)
.

Choosing one function f(·)
g(·) from each of the remaining equivalence classes and

associating to it, the (Λ × T ) code array C by letting C(λ, t) = 1 iff f(βt)
g(βt) = λ

where t ∈ ZT and λ ∈ P
1(GF (q)) results in a ((q + 1) × T, T, 2κ′) 2-D OOC of

size 1
T

∑
i|(q−1) μ(i)c

(⌊
κ′
i

⌋)
.

Note 1. In the function plot constructions if one maps wavelength into time, the
resulting 2-D OOC will be of maximally OPPW-type.

Theorem 4. All of the above constructions are asymptotically optimal with re-
spect to the Johnson bound.
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Appendix A: Constructions of 1-D OOCs

Table 1. Different Known Constructions of 1-D Optical Orthogonal Codes, here p
denotes a prime and q denotes a power of a prime

Construction Name Parameters Code Size

Singer* [6] [30] (q2 + q + 1, q + 1, 1) | C |= 1

Projective Geometry* [6] ( qd+1−1
q−1

,q+1,1) | C |=
{

qd−1
q2−1

, d even,
qd−q
q2−1

, d odd.

Combinatorial Method* [6](n, 3, 1), n �= 2 (mod 6) | C |= ⌊ n−1
6

⌋
Chung-Kumar* [7] (p2m − 1, pm + 1, 2) | C |= pm − 2

Chung-Kumar* [7] (p,ω, 1), p = ω(ω − 1)r + 1| C |= r
(via Wilson difference sets)ω = 2m + 1, or ω = 2m

MZKZ Family A [9] (pm,m, t) | C |
m|(p − 1),1 ≤ t ≤ m = 1

mp

∑
d|(p−1) p�(t+1)/d�μ(d)

MZKZ Family B [9] ((q − 1)p, (p − t), t) | C |= q
p

(
qt−1
q−1

)
1 ≤ t ≤ (p − t)

MZKZ Family C [9] (m(q + 1), m, 2t) | C |=
m|(q − 1), (m,q + 1) = 1 1

(q+1)m

∑
d|(q−1) μ(d)c([t/d])

1 ≤ t ≤ m/2 c(t) as defined in Lemma 1

Bose-Chowla* (q2 − 1, q, 1) | C |= 1
Construction [29] [31] [32]

Generalized* [29] (qa − 1, q, 1) | C |= qa−2 + qa−3 + · · · + 1
Bose-Chowla (lines)

Generalized* [5] (qa − 1, qa−1, qa−2) | C |= 1
Bose-Chowla (hyperplanes)

Conics on [28] (q3 + q2 + q + 1, q + 1, 2) | C |= q3 − q2 + q
Finite Projective Plane

An * in the table indicates that the corresponding construction is optimal with respect
to some bound.
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1 Introduction

For an odd prime power q let Fq be the finite field of order q and let d be a prime
divisor of q−1. The cyclotomic classes of order d give a partition of F∗

q := Fq\{0}
defined by

D0 := {αdn : 0 ≤ n ≤ (q − 1)/d− 1} and Dj := αjD0, 1 ≤ j ≤ d− 1,

for a generating element α of F∗
q .

In [14] Sidel’nikov introduced the q − 1-periodic sequence S = s0, s1, . . . with
terms in Fd defined by

sn = j ⇔ αn + 1 ∈ Dj, n = 0, . . . , q − 2, n 
= (q − 1)/2,
s(q−1)/2 = 0, and (1)
sn+q−1 = sn, n ≥ 0.
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Independently in [9] Lempel, Cohn and Eastman studied the sequence (1) for
d = 2.

The linear complexity profile of a sequence S = s0, s1, . . . over the field Fd is
the function L(S,N) defined for every positive integer N , as the least order L
of a linear recurrence relation over Fd

sn = c1sn−1 + . . .+ cLsn−L, (2)

for all L ≤ n ≤ N−1, which S satisfies. We use the convention that L(S,N) = 0
if the first N elements of S are all zero and L(S,N) = N if the first N − 1
elements of S are zero and sN−1 
= 0. The value

L(S) = sup
N≥1

L(S,N)

is called the linear complexity of the sequence S. For the linear complexity of
any periodic sequence of period t one easily verifies that L(S) = L(S, 2t) ≤ t.
Alternatively, the linear complexity of a periodic sequence with terms in Fd is
the length of the shortest linear recurrence relation (2) the sequence satisfies for
all n ≥ L.

In Section 2 we recall some concepts and facts from the theory of linear
recurring sequences over finite fields (see [10, Chapter 6] and [3]), and present
a technique for determining the linear complexity of sequences of the form (1).
Roughly speaking, we can determine the exact linear complexity whenever we
know the value of certain cyclotomic numbers and the factorization of Xq−1− 1
over Fd. Unconditionally we prove two results which yield good lower bounds on
the linear complexity of sequences of the form (1) for several classes of period
length. In Section 3 we use the results of Section 2 to obtain exact results on
the linear complexity of the ternary Sidel’nikov sequence. In Section 4 we prove
a general lower bound on the linear complexity profile. The results on the linear
complexity and the linear complexity profile complement and extend results
in previous works on the binary case by Helleseth and Yang [6], Kyureghyan
and Pott [8], and Meidl and Winterhof [12]. Finally, in Section 5 we prove an
upper bound on the aperiodic autocorrelation of the Sidel’nikov sequence which
complements the results of [7] on the autocorrelation distribution.

2 Preliminaries

Let S = s0, s1, . . . be an N -periodic sequence over Fd, then we can identify S
with the polynomial S(X) := s0 + s1X + . . . + sN−1X

N−1 ∈ Fd[X ] of degree
at most N − 1. The following well known lemma [3, Lemma 8.2.1] describes the
computation of the linear complexity of a periodic sequence.

Lemma 1. Let S be a sequence of period N over Fd and

S(X) := s0 + s1X + . . .+ sN−1X
N−1.

Then the linear complexity of S is given by

N − deg(gcd(XN − 1, S(X))).
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If N = dsr with gcd(d, r) = 1, then we have XN − 1 = (Xr − 1)ds

. Conse-
quently, in order to calculate the linear complexity of S we are interested in the
multiplicities of the rth roots of unity as roots of the polynomial S(X). For the
determination of the multiplicity of roots of the polynomial S(X) we can employ
the kth Hasse derivative (cf. [5]) S(X)(k) of S(X), which is defined to be

S(X)(k) =
N−1∑
n=k

(
n

k

)
snX

n−k.

The multiplicity of ξ as root of S(X) is v if S(ξ)=S(ξ)(1) = . . . = S(ξ)(v−1) =0
and S(ξ)(v) 
= 0 (cf. [10, Lemma 6.51]).

In order to obtain results on the linear complexity of the sequence (1) we are
interested in the Hasse derivatives of the polynomial S(X) which corresponds
to the sequence (1).

The binomial coefficients modulo d appearing in S(X)(k) can be evaluated
with Lucas’ congruence (cf. [4,11])(

n

k

)
≡
(
n0

k0

)
· · ·
(
nl

kl

)
mod d,

if n0, ..., nl and k0, ..., kl are the digits in the d-ary representation of n and k,
respectively. We immediately see that(

n

k

)
≡
(
i

k

)
mod d (3)

for k < dl and n ≡ i mod dl.
As before we denote the cyclotomic classes of order δ by Dj, j = 0, . . . δ − 1,

for a divisor δ of q − 1. The cyclotomic numbers (i, j)δ of order δ are defined by

(i, j)δ = |(Di + 1) ∩Dj |, 0 ≤ i, j ≤ δ − 1.

(For monographs on cyclotomic numbers see [2,15].)
Put l = 1 if k = 0 and l = �logd(k)	+1 if k ≥ 1. For the sequence S defined by

(1) we can express S(1)(k), k = 0, 1, . . . , dl − 1, in terms of cyclotomic numbers
of order dl using (3), namely

S(1)(k) =
q−2∑
n=k

(
n

k

)
sn =

dl−1∑
i=k

(
i

k

) ∑
n≡i mod dl

sn =
dl−1∑
i=k

(
i

k

) ∑
n≡i mod dl

d−1∑
m=1

∑
sn=m

m

=
dl−1∑
i=k

(
i

k

) dl−1−1∑
j=0

d−1∑
m=1

(i, dj +m)dlm. (4)

More general, if r is a divisor of q − 1 with gcd(r, d) = 1, and ξ is a primitive
rth root of unity over Fd then for the sequence S defined by (1) we can express
S(ξ)(k) in terms of cyclotomic numbers of order dlr, namely
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S(ξ)(k) =
q−2∑
n=k

(
n

k

)
snξ

n−k =
r−1∑
h=0

q−2∑
n=k

n≡h+k mod r

(
n

k

)
snξ

h

=
r−1∑
h=0

dl−1∑
i=k

(
i

k

) ∑
n≡i mod dl

n≡h+k mod r

snξ
h

=
r−1∑
h=0

dl−1∑
i=k

(
i

k

) dl−1r−1∑
j=0

d−1∑
m=1

(u(h, i), dj +m)dlrmξ
h, (5)

where u(h, i) is (by the Chinese-Remainder-Theorem) the unique integer u with
0 ≤ u ≤ dlr − 1, u ≡ h+ k mod r, and u ≡ i mod dl.

Since in general the determination of cyclotomic numbers of order δ is diffi-
cult if δ is not small, we can utilize the above relations solely for small r. The
following propositions on large prime factors r of q−1 enables us to obtain good
lower bounds on the linear complexity for several classes of period length q − 1.
For certain classes of period length the propositions reduce the problem of de-
termining the exact linear complexity to the problem of finding the multiplicity
of ±1 as a root of S(X).

Proposition 1. Let r 
= d be a prime divisor of q − 1. If d is a primitive root
mod r and r ≥ q1/2 +1 then for each r-th root of unity β 
= 1 we have S(β) 
= 0.

Proof. Since βr = 1 we get

S(β) =
q−2∑
n=0

snβ
n =

r−1∑
h=0

(q−1)/r−1∑
j=0

sh+jrβ
h.

Note that the least residue of (q − 1)/2 modulo r is 0. Since d is a primitive
root mod r the polynomial Φr(X) = 1 +X + . . .+Xr−1 is irreducible and thus
the minimal polynomial of β over Fd. Consequently S(β) = 0 implies

(q−1)/r−1∑
j=0

sh+jr =
(q−1)/r−1∑

j=0

sjr, h = 1, . . . , r − 1.

Note that for n 
= (q − 1)/2 we have that

εsn

d = χd(αn + 1), (6)

where χd denotes the nontrivial multiplicative character with χd(αk)=e2π
√−1k/d

and εd = e2π
√−1/d.

Furthermore, note that

(q−1)/r−1∏
j=0

(
αjrX + 1

)
= 1−X(q−1)/r.
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Hence,

ε
∑ (q−1)/r−1

j=0 sh+jr

d =
(q−1)/r−1∏

j=0

χd(αh+jr + 1) = χd(1− αh(q−1)/r)

has the same value for all h = 1, . . . , r − 1. Now

r − 1 =

∣∣∣∣∣
r−1∑
h=0

χd(1 − αh(q−1)/r)

∣∣∣∣∣ = r

q − 1

∣∣∣∣∣
q−2∑
h=0

χd(1− αh(q−1)/r)

∣∣∣∣∣
≤ r

q − 1

((
q − 1
r
− 1
)
q1/2 + 1

)
< q1/2

by Weil’s bound for character sums (see e.g. [10, Theorem 5.41]) contradicting
our assumption on r.

Proposition 2. Let r 
= d be a prime divisor of q − 1 and q ≡ 3 mod 4. If d is
a primitive element mod r and

r ≥ q1/2 1
min0≤a≤d−1 | cos 2πa/d| + 1 (7)

then for each 2r-th root of unity β 
= ±1 we have S(β) 
= 0.

Proof. For βr = 1 the statement follows from Proposition 1.
If βr = −1 we get

S(β) =
q−2∑
n=0

snβ
n =

r−1∑
h=0

(q−1)/r−1∑
j=0

(−1)jsh+jrβ
h.

Again from the irreducibility of Φr(X) = 1 − X + . . . − Xr−2 + Xr−1 we
conclude that Φr(X) is the minimal polynomial of β over Fd, and that S(β) = 0
implies

(q−1)/r−1∑
j=0

(−1)jsh+jr = (−1)h

(q−1)/r−1∑
j=0

(−1)jsjr , h = 1, . . . , r − 1.

Denote the sum on the left side by T (h). Then it is obvious that T (h + r)
= −T (h) and that T (0) = T (2) = . . . = T (2r − 2) = −T (1) = −T (3) = . . . =
−T (2r− 1).

Hence,

2(r − 1) min
0≤a≤d−1

| cos 2πa/d| ≤
∣∣∣(r − 1)

(
ε

T (0)
d + ε

−T (0)
d

)∣∣∣
=

∣∣∣∣∣∣∣
2r−1∑
h=1
h�=r

ε
∑ (q−1)/r−1

j=0 (−1)jsh+jr

d

∣∣∣∣∣∣∣ . (8)



52 N. Brandstätter and W. Meidl

Note that, provided that q ≡ 3 mod 4, we have

(q−1)/r−1∏
j=0

(
αjrX + 1

)(−1)j

=
(
1 +X(q−1)/2r

)(
1−X(q−1)/2r

)−1

,

where we denote the function on the right side by f(X). Hence, for 1 ≤ h ≤ 2r−1
except for h = r, it follows together with (6) that

ε
∑ (q−1)/r−1

j=0 (−1)jsh+jr

d =
(q−1)/r−1∏

j=0

χd(αh+jr + 1)(−1)j

= χd(f(αh)).

Now, together with (8) this yields

2(r − 1) min
0≤a≤d−1

| cos 2πa/d| ≤
∣∣∣∣∣
2r−1∑
h=0

χd(f(αh))

∣∣∣∣∣ = 2r
q − 1

∣∣∣∣∣
q−2∑
h=0

χd(f(αh))

∣∣∣∣∣
≤ 2r
q − 2

((
q − 2
r
− 1
)
q1/2 + 1

)
< 2q1/2

by Weil’s bound for character sums contradicting our assumption on r.

Propositions 1 and 2 immediately yield the lower bound L(S) ≥ 2(r − 1)ds for
the sequence (1) over Fd with period length of the form q − 1 = 2udsr, u 
= d
odd, d is a primitive root modulo the prime r and r satisfies (7). For instance,
for d = 5 condition (7) equals r ≥ q1/2 1

cos 2π/d + 1 ≈ 3.236q1/2 + 1.

3 The Ternary Case d = 3

From Propositions 1 and 2 we know that a 2rth root of unity β 
= ±1 is not a
root of the polynomial S(X) if r is a prime such that 3 is a primitive element
modulo r and r ≥ 2q1/2 + 1, q ≡ 3 mod 4. If q = 3s2r+ 1 is a prime power such
that r is a prime and 3 is a primitive element modulo r, then we can obtain
exact values for the linear complexity of the sequence (1) for the ternary case
if we know the multiplicity of 1 and −1 as a root of S(X). In the following we
establish general results on the multiplicity of 1 and −1 as a root of S(X). First
we focus on the multiplicity of 1 and remark that X − 1 will always be a divisor
of gcd(Xq−1 − 1, S(X)).

For the proof of our first result we will need cyclotomic numbers of order 3.
For q = 3t+ 1 let L2 and M2 be the uniquely determined integers such that

4q = L2 + 27M2, L ≡ 1 mod 3. (9)

We remark that the sign of M is ambiguously determined, depending on the
choice of the primitive element α. Then we have [3, p.92]

(1, 1)3 = (2q − 4− L− 9M)/18,
(2, 1)3 = (1, 2)3 = (q + 1 + L)/9 and (10)
(2, 2)3 = (2q − 4− L+ 9M)/18.
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Proposition 3. (i) (X − 1)2 divides gcd(Xq−1 − 1, S(X)) if and only if q ≡
1 mod 9.

(ii) (X − 1)3 divides gcd(Xq−1 − 1, S(X)) if and only if q ≡ 1 mod 9 and M ≡
0 mod 3, where M is determined (up to sign) from the representation (9)
of q.

Proof. First we note that (X − 1)2 and (X − 1)3 divide Xq−1 − 1. To estimate
the multiplicity of 1 as a root of S(X) we employ the Hasse derivatives. With
(4) we obtain

S(1)(1) = (1, 1)3 + 2(1, 2)3 + 2(2, 1)3 + (2, 2)3, and
S(1)(2) = (2, 1)3 + 2(2, 2)3.

With (10) this yields

S(1)(1) = (1, 1)3 + (1, 2)3 + (2, 2)3 =
2q − 4− L− 9M

18
+
q + 1 + L

9

+
2q − 4− L+ 9M

18
=
q − 1

3
≡ 0 mod 3

if and only if q ≡ 1 mod 9. For S(1)(2) we obtain

S(1)(2) =
q + 1 + L

9
+ 2

2q − 4− L+ 9M
18

=
q − 1

3
+M ≡ 0 mod 3.

Since we have to assume that q ≡ 1 mod 9 this yields S(1)(2) ≡ 0 mod 3 if
and only if M ≡ 0 mod 3.

The subsequent proposition presents results on the multiplicity of 2 as a root of
gcd(Xq−1− 1, S(X)). Note that 6 divides q− 1 and that 2 is a root of Xq−1− 1
with multiplicity at least 3. The proof of the proposition uses the same technique
as the proof of Proposition 3. For the sake of completeness the proof is added
in the Appendix. Instead of cyclotomic numbers of order 3 we have to employ
cyclotomic numbers of order 6 which depend upon the decomposition

q = 6f + 1 = A2 + 3B2 (11)

of q with A ≡ 1 mod 3 and additionally gcd(A, q) = 1 if q = pm and p ≡
1 mod 6. The sign of B is ambiguously determined, depending on the choice of
the primitive element α.

Proposition 4. (i) X+1 and (X+1)2 divide gcd(Xq−1−1, S(X)) if and only
if B ≡ 0 mod 3,

(ii) (X + 1)3 divides gcd(Xq−1 − 1, S(X)) if and only if B ≡ 0 mod 9,
where B is determined from the representation (11) of q.

Remark 1. The condition B ≡ 0 mod 3 is satisfied if and only if 2 is a cube in
Fq (cf. [2, Corollary 2.6.4]).
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With the Propositions 1 – 4 we immediately obtain the following exact values
for the linear complexity of the ternary Sidel’nikov sequence.
Theorem 1. Let S be the ternary Sidel’nikov sequence (1) with period q− 1 for
a prime power q of the form q = 3s2r + 1, where r is a prime such that 3 is a
primitive root modulo r, and suppose that r ≥ 2q1/2 + 1. If

– q 
≡ 1 mod 9, B 
≡ 0 mod 3 then L(S) = q − 2,
– q ≡ 1 mod 9, M 
≡ 0 mod 3, B 
≡ 0 mod 3 then L(S) = q − 3,
– q 
≡ 1 mod 9, B ≡ 0 mod 3, B 
≡ 0 mod 9 then L(S) = q − 4,
– q ≡ 1 mod 9, M 
≡ 0 mod 3, B ≡ 0 mod 3, B 
≡ 0 mod 9 then L(S) = q − 5.

A Remark to Higher Derivatives

In [1] Baumert and Fredricksen presented formulas for the cyclotomic numbers
of order 9 and 18 for the case of a prime field Fp. More precisely, if p = 3s2r+ 1
with s ≥ 2 and (γ being a 9th root of unity)

p =

(
5∑

i=0

ciγ
i

)(
5∑

i=0

ciγ
−i

)
is a factorization of p in the field of 9th roots of unity, then each cyclotomic
number of order 9 respectively of order 18 is expressed as a constant plus a
linear combination of p, L,M, c0, . . . , c5. We will indicate how we can use this
results to obtain more information on the linear complexity of the Sidel’nikov
Sequence.

With the knowledge of the cyclotomic numbers of order 9 and 18 we are able
to determine S(k)(1) and S(k)(2) for k = 3, . . . , 8 from (4) and (5).

Here, we restrict ourselves to the 4th derivatives for the special case that
ind 2 ≡ 0 mod 9 and ind 3 ≡ 1 mod 3. Applying the results of [1] with straight-
forward but longsome calculations we get

S(3)(1) = c2 and S(3)(2) =
c2 − c5

2
.

Hence we obtain the following proposition for the considered special case.

Proposition 5. (i) (X − 1)4 divides gcd(Xp−1 − 1, S(X)) if and only if p ≡
1 mod 9, M ≡ 0 mod 3 and c2 ≡ 0 mod 3,

(ii) (X+1)4 divides gcd(Xp−1−1, S(X)) if and only if B ≡ 0 mod 9 and c2−c5 ≡
0 mod 6.

Consequently for this special case we can extend Theorem 1 as follows.

Theorem 2. Let S and p satisfy the conditions of Theorem 1. Let ind 2 ≡
0 mod 9 and ind 3 ≡ 1 mod 3. If
– p ≡ 1 mod 9, M ≡ 0 mod 3, c2 
≡ 0 mod 3, B ≡ 0 mod 3, B 
≡ 0 mod 9 then
L(S) = p− 6,

– p ≡ 1 mod 9, M 
≡ 0 mod 3, B ≡ 0 mod 9, c2 − c5 
≡ 0 mod 6 then L(S) =
p− 6,

– p ≡ 1 mod 9, M ≡ 0 mod 3, c2 
≡ 0 mod 3, B ≡ 0 mod 9, c2 − c5 
≡ 0 mod 6
then L(S) = p− 7.
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4 A Lower Bound on the Linear Complexity Profile

Theorem 3. The linear complexity profile L(S,N) of the Sidel’nikov sequence (1)
satisfies

L(S,N) ≥ min
(

N + 1
q1/2 log q + 3

,
q − 1

q1/2 log q + 2

)
− 1.

Proof. Suppose that S satisfies the recurrence relation (2) for L ≤ n ≤ N − 1.
If we put c0 = −1 then we have

L∑
l=0

clsn−l = 0 ∈ Fd for L ≤ n ≤ min(N, q − 1 + L)− 1.

Recall that for m 
= (q − 1)/2 we have

χd(αm + 1) = εsm

d , (12)

where χd denotes the nontrivial multiplicative character of order d with χd(αm)
= e2π

√−1m/d and εd = e2π
√−1/d.

Thus, for all n satisfying L ≤ n ≤ min(N, q − 1 + L) − 1 and q−1
2 
∈ {n, n−

1, . . . , n− L}, we get

χd

(
L∏

l=0

(αn−l + 1)cl

)
=

L∏
l=0

χd(αn−l + 1)cl

=
L∏

l=0

ε
clsn−l

d = ε
∑L

l=0 clsn−l

d = 1.

Consequently,

min(N − L, q − 1)− 2(L+ 1) ≤
min(N,q−1+L)−1∑

n=L

χd

(
L∏

l=0

(αn−l + 1)cl

)
≤ (L+ 1)q1/2 log q,

where the last step follows from [13, Lemma 3.3]. The bound immediately follows
from the above inequality.

5 An Upper Bound on the Aperiodic Autocorrelation

Let S = s0, s1, . . . be an N -periodic sequence over the finite field Fd. The auto-
correlation of S is the complex-valued function defined by

Ad(S, t) :=
N−1∑
n=0

ε
sn+t−sn

d , 1 ≤ t ≤ N − 1,

where εd = e2π
√−1/d.
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In [7] Kim et al. presented results on the distribution of the autocorrelation
of the Sidel’nikov sequence when t takes different values. In particular the auto-
correlation of the Sidel’nikov sequence (1) was determined to be

Ad(S, t) = χ−1
d (1− αt) + χd(1− α−t)− χd(α−t)− 1,

for 1 ≤ t ≤ N − 1.
While the autocorrelation reflects global randomness the aperiodic autocorre-

lation, which is defined by

AACd(S, u, v, t) =
v∑

n=u

ε
sn−sn+t

d , 0 ≤ u < v < N, 1 ≤ t < N,

reflects local randomness.
If S is a random sequence over Fd then |Ad(S, t)| and |AACd(S, u, v, t)| can be

expected to be quite small. The security of many cryptographic systems depends
upon the generation of pseudorandom, i. e., unpredictable quantities and a low
(aperiodic) autocorrelation is a desirable feature for pseudorandom sequences.

Theorem 4. The aperiodic autocorrelation AACd(S, u, v, t) of the Sidel’nikov
sequence (1) over Fd can be estimated by

|AACd(S, u, v, t)| ≤ 2q1/2 log q + 2,

for 0 ≤ u < v < q − 1 and 1 ≤ t < q − 1.

Proof. By definition and by (12) we have

|AACd(S, u, v, t)| =
∣∣∣∣∣

v∑
n=u

ε
sn−sn+t

d

∣∣∣∣∣ ≤
∣∣∣∣∣

v∑
n=u

χd(αn + 1)χd−1
d (αn+t + 1)

∣∣∣∣∣+ 2

=

∣∣∣∣∣
v∑

n=u

χd

(
(αn + 1)(αn+t + 1)d−1

)∣∣∣∣∣+ 2 ≤ 2q1/2 log q + 2,

where the last inequality follows from [13, Lemma 3.3].

Remark 2. We remark that the estimate in Theorem 4 accords with

max
t=1,...,q−2

|AACd(S, 0, N − 1, t)| = Ω(q1/2),

where N = (1/5− ε)q, ε > 0.
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Appendix

For the proof of Proposition 4 we will utilize the following relation between the
cyclotomic numbers of order d (cf. [3, p.84]]. Let q = df + 1, then

(i, j)d = (d− i, j − i)d =
{

(j, i)d, f even
(j + d/2, i+ d/2)d, f odd . (13)

We will then need the following cyclotomic numbers of order 6 given in [3,
Appendix B]. Let q ≡ 1 mod 6 with decomposition (11) and let 2 = αm.
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Case Ia: q ≡ 1 mod 12, m ≡ 0 mod 3

(0, 1)6 = (q − 5 + 4A+ 18B)/36, (0, 2)6 = (q − 5 + 4A+ 6B)/36,
(0, 4)6 = (q − 5 + 4A− 6B)/36, (0, 5)6 = (q − 5 + 4A− 18B)/36,
(1, 2)6 = (1, 3)6 = (1, 4)6 = (2, 4)6 = (q + 1− 2A)/36.

Case Ib: q ≡ 1 mod 12, m ≡ 1 mod 3

(0, 1)6 = (q − 5 + 4A+ 12B)/36, (0, 5)6 = (q − 5 + 4A− 6B)/36,
(1, 3)6 = (q + 1− 2A− 6B)/36, (1, 4)6 = (q + 1− 2A+ 12B)/36.

Case Ic: q ≡ 1 mod 12, m ≡ 2 mod 3

(0, 1)6 = (q − 5 + 4A+ 6B)/36, (0, 5)6 = (q − 5 + 4A− 12B)/36,
(1, 3)6 = (q + 1− 2A− 12B)/36, (1, 4)6 = (q + 1− 2A+ 6B)/36.

Case IIa: q ≡ 7 mod 12, m ≡ 0 mod 3

(1, 0)6 = (q − 5 + 4A+ 6B)/36, (0, 1)6 = (0, 2)6 = (q + 1− 2A+ 12B)/36,
(1, 1)6 = (q − 5 + 4A− 6B)/36, (1, 2)6 = (2, 1)6 = (q + 1− 2A)/36,
(0, 4)6 = (0, 5)6 = (q + 1− 2A− 12B)/36.

Case IIb: q ≡ 7 mod 12, m ≡ 1 mod 3

(0, 2)6 = (q + 1− 2A+ 12B)/36, (0, 4)6 = (q + 1− 8A− 12B)/36,
(1, 0)6 = (q − 5− 2A+ 6B)/36, (1, 1)6 = (q − 5 + 4A− 6B)/36.

Case IIc: q ≡ 7 mod 12, m ≡ 2 mod 3

(0, 2)6 = (q + 1− 8A+ 12B)/36, (0, 4)6 = (q + 1− 2A− 12B)/36,
(1, 0)6 = (q − 5 + 4A+ 6B)/36, (1, 1)6 = (q − 5− 2A− 6B)/36.

Proof of Proposition 4: With (5) we obtain

S(2) = (0, 1)6 + (0, 4)6 + (4, 1)6 + (4, 4)6 + (2, 1)6 + (2, 4)6
+2(0, 2)6 + 2(0, 5)6 + 2(4, 2)6 + 2(4, 5)6 + 2(2, 2)6 + 2(2, 5)6
+2(3, 1)6 + 2(3, 4)6 + 2(1, 1)6 + 2(1, 4)6 + 2(5, 1)6 + 2(5, 4)6
+(3, 2)6 + (3, 5)6 + (1, 2)6 + (1, 5)6 + (5, 2)6 + (5, 5)6.

If q ≡ 1 mod 12 with (13) we obtain S(2) = 2(0, 1)6 + (0, 5)6 + (1, 3)6 + 2(1, 4)6.
For the Case Ia, i.e. 2 is a cube which implies B ≡ 0 mod 3, we then get

S(2) = 2
q − 5 + 4A+ 18B

36
+
q − 5 + 4A− 18B

36
+
q + 1− 2A

36

+2
q + 1− 2A

36

= −q − 5 + 4A+ 18B
36

+
q − 5 + 4A− 18B

36
= −B = 0.
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In the Case Ib, where B 
≡ 0 mod 3, we obtain

S(2) = 2
q − 5 + 4A+ 12B

36
+
q − 5 + 4A− 6B

36
+
q + 1− 2A− 6B

36

+2
q + 1− 2A+ 12B

36
=
−18B

36
+
−18B

36
= −B 
= 0.

Finally for Case Ic (again B 
≡ 0 mod 3) we get

S(2) = 2
q − 5 + 4A+ 6B

36
+
q − 5 + 4A− 12B

36
+
q + 1− 2A− 12B

36

+2
q + 1− 2A+ 6B

36
=
−18B

36
+
−18B

36
= −B 
= 0.

If q ≡ 7 mod 12 (13) yields S(2) = 2(0, 4)6 + 2(1, 1)6 + (0, 2)6 + (1, 0)6. Conse-
quently for the Case IIa we obtain

S(2) = 2
q + 1− 2A− 12B

36
+ 2

q − 5 + 4A− 6B
36

+
q + 1− 2A+ 12B

36

+
q − 5 + 4A+ 6B

36
=

24B
36

+
12B
36

= B = 0.

For the Case IIb respectively for the Case IIc we get

S(2) = 2
q + 1− 8A− 12B

36
+ 2

q − 5 + 4A− 6B
36

+
q + 1− 2A+ 12B

36

+
q − 5− 2A+ 6B

36
=

6A+ 24B
36

+
−6A+ 12B

36
= B 
= 0,

respectively

S(2) = 2
q + 1− 2A− 12B

36
+ 2

q − 5− 2A− 6B
36

+
q + 1− 8A+ 12B

36

+
q − 5 + 4A+ 6B

36
=
−6A+ 24B

36
+

6A+ 12B
36

= B 
= 0.

Summarizing S(2) = 0 if and only if 2 is a cube or equivalently B ≡ 0 mod 3.
With (5) we obtain

S(2)(1) = (1, 1)6 + 2(1, 2)6 + (1, 4)6 + 2(1, 5)6 + 2(5, 1)6 + (5, 2)6
+2(5, 4)6 + (5, 5)6 + 2(4, 1)6 + (4, 2)6 + 2(4, 4)6 + (4, 5)6
+(2, 1)6 + 2(2, 2)6 + (2, 4)6 + 2(2, 5)6.

If q ≡ 1 mod 12 with (13) this yields S(2)(1) = (0, 5)6 + (0, 1)6 + 2(2, 4)6 +
2(0, 2)6 +(1, 2)6 +2(0, 4)6, and hence for m ≡ 0 mod 3, the only case of interest,
we get

S(2)(1) =
q − 5 + 4A− 18B

36
+
q − 5 + 4A+ 18B

36
+ 2

q + 1− 2A
36

+2
q − 5 + 4A+ 6B

36
+
q + 1− 2A

36
+ 2

q − 5 + 4A− 6B
36

=
−12B

36
+

12B
36

= 0.
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If q ≡ 7 mod 12 with (13) we have S(2)(1) = (0, 2)6+(0, 4)6+2(0, 5)6+2(2, 1)6+
(1, 2)6 + 2(0, 1)6, which again vanishes if m ≡ 0 mod 3 (Case IIa).

Finally (5) yields S(2)(2) = (2, 1)6 + (2, 4)6 + 2(2, 2)6 + 2(2, 5)6 + 2(5, 1)6 +
2(5, 4)6 + (5, 2)6 + (5, 5)6. Using (13) for the Case Ia we obtain

S(2)(2) = (2, 4)6 + 2(0, 4)6 + 2(1, 2)6 + (0, 1)6

=
q + 1− 2A

36
+ 2

q − 5 + 4A− 6B
36

+ 2
q + 1− 2A

36

+
q − 5 + 4A+ 18B

36
=

2B
3
,

and for the Case IIa we obtain

S(2)(2) = (2, 1)6 + 2(0, 1)6 + 2(1, 2)6 + (0, 4)6

=
q + 1− 2A

36
+ 2

q + 1− 2A+ 12B
36

+ 2
q + 1− 2A

36

+
q + 1− 2A− 12B

36
= −2B

3
.

Consequently S(2)(2) = 0 if and only if B ≡ 0 mod 9. �
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Abstract. In this paper, for positive integers m, M , and a prime p such
that M |pm − 1, we derive linear complexity over the prime field Fp of
M -ary Sidel’nikov sequences of period pm−1 using discrete Fourier trans-
form. As a special case, the linear complexity of the ternary Sidel’nikov
sequence is presented. It turns out that the linear complexity of a ternary
Sidel’nikov sequence with the symbol k0 �= 1 at the (pm − 1)/2-th posi-
tion is nearly close to the period of the sequence, while that with k0 = 1
shows much lower value.

1 Introduction

Linear complexity of sequences is one of the important properties of sequences
employed in the secure communication and cryptography. Having a large linear
complexity implies the difficulty in the analysis of the sequence.

For positive integers m, M , and a prime p, such that M |pm − 1, Sidel’nikov
[9] constructed M -ary sequences (called Sidel’nikov sequences) of period pm− 1,
the out-of-phase autocorrelation magnitude of which is upper bounded by 4 [9].
Later, Lempel, Cohn, and Eastman [8] independently rediscovered the binary
Sidel’nikov sequences of period pm − 1. These binary sequences have near-ideal
autocorrelation property which, under the condition of balancedness, is optimal.

Helleseth and Yang [5] studied the linear complexity over F2 of the binary
Sidel’nikov sequences. And Kyureghyan and Pott [7] extended their results using
cyclotomic numbers. But these results are limited only to some special cases.

There has been another approach to the study of the linear complexity of
the binary Sidel’nikov sequences. Since Sidel’nikov sequences are constructed
based on the finite field Fpm , Helleseth, Kim, and No [3] introduced the linear
complexity over Fp of the binary Sidel’nikov sequences. But they showed only for
small primes p such as p = 3, 5, and 7. Recently, Helleseth, Maas, Mathiassen,
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of the Laboratory of Excellency.
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and Segers [4] derived the linear complexity over the prime field Fp of the binary
Sidel’nikov sequences for a prime p. For the balanced Sidel’nikov sequences,
Kim, Chung, No, and Chung present the linear complexity over Fp of M -ary
Sidel’nikov sequences using discrete Fourier transform [6].

In this paper, the derivation [6] of the linear complexity over Fp of M -ary
Sidel’nikov sequences is extended to the general case including unbalanced se-
quences. It turns out that the linear complexity of a ternary Sidel’nikov sequence
with the symbol k0 
= 1 at the (pm−1)/2-th position is nearly close to the period
of the sequence, while that with k0 = 1 shows much lower value.

2 Preliminaries

For a sequence s(t) of period n = pm − 1, the discrete Fourier transform and its
inverse Fourier transform are given by

Ai =
1
n

n−1∑
t=0

s(t)α−it

s(t) =
n−1∑
i=0

Aiα
it

where α is a primitive element of the finite field Fpm with pm elements. An M -
ary sequence s(t) of period n, M |n, is said to be balanced if each element occurs
exactly n/M times in a period.

The M -ary Sidel’nikov sequence is defined as follows.

Definition 1. Let m and M be positive integers, and p a prime such that
M |pm − 1. Let α be a primitive element of Fpm . For k = 0, 1, · · · ,M − 1, define

Sk =
{
αMl+k − 1

∣∣∣ 0 ≤ l ≤ pm − 1
M

− 1
}
.

Then the M -ary Sidel’nikov sequence s(t) is defined as

s(t) =
{
k, αt ∈ Sk

k0, α
t = −1.

�
When k0 = 0, the Sidel’nikov sequence is balanced. The following theorem shows
some combinatorial relation between a number and its p-ary expansion.

Theorem 1. [Lucas’ Theorem] [1] If p is a prime and N =
∑I

i=0Nip
i, 0 ≤ Ni ≤

p− 1, K =
∑I

i=0 Kip
i, 0 ≤ Ki ≤ p− 1, then we have(

N

K

)
≡

I∏
i=0

(
Ni

Ki

)
mod p.

�
In this paper, we will call

(
Ni

Ki

)
Lucas factor of

(
N
K

)
.
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3 Linear Complexity of M -ary Sidel’nikov Sequences

From the Blahut’s theorem, the linear complexity of periodic sequences can be
determined by computing the Hamming weight of their Fourier transform, that
is, the number of nonzero values of their Fourier transform.

We will compute the Fourier transform of M -ary Sidel’nikov sequences for an
alphabet size M .

Theorem 2. Let L = (pm − 1)/M , n = pm − 1, and p > M . The Fourier
transform of an M -ary Sidel’nikov sequence is derived as

A−i ≡
((M − 1)

2
− k0

)
(−1)i − (−1)i

M−1∑
v=1

Bv(i)(−1)−vL

1− αvL
mod p (1)

where Bv(i) =
(

i
vL

)
.

Proof. From Definition 1, the Fourier transform of s(t) is written as

nA−i = k0(−1)i +
∑

αt∈S0\{0}
0 · αit +

∑
αt∈S1

αit + · · ·+
∑

αt∈SM−1

(M − 1)αit

= k0(−1)i +
M−1∑
u=1

L−1∑
l=0

u(αMl+u − 1)i

= k0(−1)i +
M−1∑
u=1

u

L−1∑
l=0

i∑
r=0

(
i

r

)
(−1)i−rα(Ml+u)r

= k0(−1)i +
M−1∑
u=1

i∑
r=0

u

(
i

r

)
(−1)i−rαur

L−1∑
l=0

αMlr .

The innermost sum is equal to L for r = 0, L, · · · , (M − 1)L, and is equal to
zero, otherwise. Therefore, we have

nA−i = k0(−1)i +
M−1∑
v=0

M−1∑
u=1

Lu

(
i

vL

)
(−1)i−vLαuvL

= k0(−1)i +
M−1∑
v=0

L

(
i

vL

)
(−1)i−vL

M−1∑
u=1

uαuvL.

For v = 0 in the above summation, we have

M−1∑
u=1

un

M

(
i

0

)
(−1)i =

n

M
(−1)i

M−1∑
u=1

u =
n(M − 1)

2
(−1)i

and thus

nA−i =k0(−1)i +
n(M − 1)

2
(−1)i +

M−1∑
v=1

L

(
i

vL

)
(−1)i−vL

M−1∑
u=1

uαuvL. (2)
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We can modify the inner sum in the last term of (2) as

M−1∑
u=1

uαuvL =
1

1− αvL

(M−1∑
u=1

αuvL − (M − 1)αvLM

)
=
−M

1− αvL
. (3)

Applying (3) to (2) and n ≡ −1 mod p, we have

A−i ≡
((M − 1)

2
− k0

)
(−1)i − (−1)i

M−1∑
v=1

Bv(i)(−1)−vL

1− αvL
mod p

where Bv(i) =
(

i
vL

)
. �

Let F be number of integers i, 0 ≤ i < n, satisfying the relation

(M − 1)
2

− k0 ≡
M−1∑
v=1

Bv(i)(−1)−vL

1− αvL
mod p, (4)

which corresponds to A−i = 0 in (1). Then the linear complexity over Fp of the
M -ary Sidel’nikov sequences of period n is given as

LM (p) = n− F.

In order to compute the linear complexity of M -ary Sidel’nikov sequences,
we have to find F in (4). Bv(i) in (4) can be factored into Lucas factors using
Lucas’ theorem. Since the Lucas factors are integers, they can be represented by
the primitive element β of the prime field Fp.

Note that for 0 ≤ i < vL, we have Bv(i) = Bv+1(i) = · · · = BM−1(i) =
0. Let bv = (−1)−vL/(1− αvL). Note that for p ≡ 1 mod M , αL ∈ Fp because
(αL)p−1 = (α

p−1
M )pm−1 = 1. Thus, we also have bv ∈ Fp.

By dividing the range of i into M subranges, (4) can be separately rewritten
as

0 = M−1
2 − k0, for 0 ≤ i < L

b1B1(i) = M−1
2 − k0, for L ≤ i < 2L

b1B1(i) + b2B2(i) = M−1
2 − k0, for 2L ≤ i < 3L

...
...∑M−1

v=1 bvBv(i) = M−1
2 − k0, for (M − 1)L ≤ i < ML.

(5)

For 1 ≤ l ≤M − 1, let Fl(c1, c2, · · · , cl) be the number of i, lL ≤ i < (l+1)L,
such that (B1(i), B2(i), · · · , Bl(i)) = (c1, c2, · · · , cl). Then the total number of i
satisfying the (l + 1)-th equation is given as∑

b1c1+b2c2+···+blcl=
M−1

2 −k0

Fl(c1, c2, · · · , cl).
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Let the number of i satisfying the first equation in (5) be denoted by F0. If
k0 
= (M − 1)/2, the solutions for (4) do not exist in the subrange 0 ≤ i < L.
And if k0 = (M − 1)/2, all i’s, 0 ≤ i < L, satisfy (4). That is, we have

F0 =
{
L, if k0 = M−1

2
0, otherwise.

Using the above procedure, we can obtain the number of i satisfying (4) as

F = F0 +
M−1∑
l=1

∑
b1c1+b2c2+···+blcl=

M−1
2 −k0

Fl(c1, c2, · · · , cl),

which corresponds to the number of i, 0 ≤ i < n, such that A−i = 0. Thus, we
have the following theorem.

Theorem 3. The linear complexity over Fp of the M -ary Sidel’nikov sequences
of period n = pm − 1 equals

LM (p) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
n− L−

M−1∑
l=1

∑
b1c1+b2c2+···+blcl=

M−1
2 −k0

Fl(c1, c2, · · · , cl), for k0 = M−1
2

n−
M−1∑
l=1

∑
b1c1+b2c2+···+blcl=

M−1
2 −k0

Fl(c1, c2, · · · , cl), otherwise.

�
In general, it is not easy to find Fl(c1, c2, · · · , cl) forM -ary Sidel’nikov sequences.
In the next section, we will find the linear complexity for M = 3 as a special
case.

4 Linear Complexity of Ternary Sidel’nikov Sequences

Let β be a primitive element of Fp. For M = 3, we have to count the number of
nonzero A−i’s, 0 ≤ i < n in (4). Note that for M = 3, we have (−1)L = 1 and
(αL)3 = 1. Thus, we have

(αL + 2)(1− αL) = 3. (6)

Lemma 1. For M = 3, (5) is written as

3(1− k0) =
(
B1(i)−B2(i)

)
αL + 2B1(i) +B2(i). (7)

Proof. From Theorem 3, for M = 3, we have

1− k0 =
2∑

v=1

Bv(i)
1− αvL

=
B1(i)
1− αL

+
B2(i)

1− α2L
=

(1− α2L)B1(i) + (1− αL)B2(i)
1− αL − α2L + α3L

.

From 1 + αL + α2L = 0, (7) is easily derived. �
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Now, we are going to derive the linear complexities of the ternary Sidel’nikov
sequences of period n = pm−1 for p = 3d+1 and p = 3d+2, as in the following
two theorems.

Theorem 4. Let n = pm − 1 and p = 3d+ 2 be a prime, where d is a positive
integer. Let 3|n. Let βh = 1 − k0 for k0 
= 1. For 0 ≤ k ≤ p − 1, let βfk ≡(
k
d

)
mod p, βgk ≡

(
k

2d+1

)
mod p, and vk and uk be the numbers of

(
k
d

)
and

(
k

2d+1

)
among the Lucas factors of Bv(i), respectively. Let V1 =

∑p−1
k=2d+1(vkfk + ukgk)

and V2 =
∑p−1

k=2d+1(vkgk + ukfk). Then the linear complexity L3(p) over Fp of
ternary Sidel’nikov sequences of period n is given as

L3(p) =

⎧⎪⎪⎨⎪⎪⎩
n−

∑
V1≡h mod (p−1)
V2≡h mod (p−1)

[
(v2d+1, · · · , vp−1)!(u2d+1, · · · , up−1)!

]
+ 1

2 (2 − k0),

for k0 
=1
(d+ 1)m

(
2

m
2 +1 − 1

)
− 1, for k0 =1

wherem = 2
∑p−1

k=2d+1 vk and (x1, x2, · · · , xl)! is a multinomial coefficient defined
as

(x1x2, · · · , xl)! =
(x1 + x2 + · · ·+ xl)!

x1!x2! · · ·xl!
.

Proof. Since 3|n, m should be even. From (5), (6), and Lemma 1, we have to
consider the following three equations.

0 = 3(1− k0), for 0 ≤ i < L (8)

(αL + 2)B1(i) = 3(1− k0), for L ≤ i < 2L (9)(
B1(i)−B2(i)

)
αL + 2B1(i) +B2(i) = 3(1− k0), for 2L ≤ i < 3L. (10)

We will derive the linear complexity for the following two cases.

Case 1) k0 
= 1;
In this case, we have to consider the following three subcases.

Case 1-a) For 0 ≤ i < L: Certainly, (8) cannot be satisfied. Thus A−i 
= 0, for
0 ≤ i < L.
Case 1-b) For L ≤ i < 2L: Since p ≡ 2 mod 3, we have (αL)p−1 
= 1, i.e.,
αL /∈ Fp. Then the right hand side of (9) is an element of Fp while its left
hand side is not an element of Fp. It is a contradiction. Therefore, A−i 
= 0 for
L ≤ i < 2L.
Case 1-c) 2L ≤ i < 3L: In (10), if B1(i) − B2(i) 
= 0, A−i 
= 0 because
αL /∈ Fp and B1(i) and B2(i) are elements of Fp. If B1(i)− B2(i) = 0, we have
B1(i) = B2(i) ≡ 1− k0 mod p.

In order to apply Lucas’ theorem, we need to expand L as

L =
pm − 1

3
=
p2 − 1

3

(m−2)/2∑
j=0

p2j =
[
dp+ (2d+ 1)

] (m−2)/2∑
j=0

p2j

= dpm−1 + (2d+ 1)pm−2 + dpm−3 + (2d+ 1)pm−4 + · · ·+ dp+ (2d+ 1).
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Let i =
∑m−1

a=0 iap
a. By Lucas’ theorem, we have

B1(i) =
(
i

L

)
≡
(
im−1

d

)(
im−2

2d+ 1

)
· · ·
(
i1
d

)(
i0

2d+ 1

)
≡ 1− k0 mod p. (11)

Similarly, we can expand 2L as

2L =(2d+ 1)pm−1 + dpm−2 + (2d+ 1)pm−3 + dpm−4 + · · ·+ (2d+ 1)p+ d

and we have

B2(i) =
(
i

2L

)
≡
(
im−1

2d+ 1

)(
im−2

d

)
· · ·
(

i1
2d+ 1

)(
i0
d

)
≡ 1− k0 mod p. (12)

Since β is a primitive element of Fp, βh = 1 − k0, βfk ≡
(
k
d

)
mod p, and

βgk ≡
(

k
2d+1

)
mod p, (11) and (12) can be rewritten as

B1(i) = βfim−1+gim−2 ···+fi1+gi0 ≡ βh mod p (13)

B2(i) = βgim−1+fim−2+···+gi1+fi0 ≡ βh mod p. (14)

Since all of the Lucas factors of B1(i) and B2(i) are not equal to zero, from (13)
and (14), we have

V1 =
p−1∑

i=2d+1

(vifi + uigi) ≡ h mod (p− 1) (15)

V2 =
p−1∑

i=2d+1

(vigi + uifi) ≡ h mod (p− 1). (16)

In order to count the number of i satisfying B1(i) = B2(i) ≡ 1−k0 mod p, we
have to count the number of solutions vi and ui, 2d + 1 ≤ i ≤ p− 1, satisfying
(15) and (16). For k0 = 0, we must rule out the case, i0 = · · · = im−1 = p − 1,
which corresponds to i = pm − 1. Then we have

F2(1− k0, 1− k0) =
∑

V1≡h mod (p−1)
V2≡h mod (p−1)

(v2d+1, · · · , vp−1)!(u2d+1, · · · , up−1)!

− 1
2
(2− k0).

Since the linear complexity L3(p) of ternary Sidel’nikov sequences is

L3(p) = n− F2(1 − k0, 1− k0),

we proved this case.

Case 2) k0 = 1;
From (8), we have F0 = L. And for L ≤ i < 2L, from (9), we know that

A−i = 0 if and only if B1(i) = 0. For 2L ≤ i < 3L, (10) tells us that A−i = 0
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if and only if B1(i) = B2(i) = 0. Thus, the linear complexity is equal to the
number of i satisfying the following three cases.

i) B1(i) 
= 0 and B2(i) 
= 0
ii) B1(i) = 0 and B2(i) 
= 0
iii) B1(i) 
= 0 and B2(i) = 0.

From (11) and (12), the number of i satisfying i) is the number of i such
that all ia’s are greater than or equal to 2d+ 1, which is given as (d+ 1)m − 1.
Now, let us count the number of i satisfying ii). From (11) and (12), we have
ia ≥ d, 0 ≤ a < m, because B2(i) 
= 0. Since B1(i) = 0, at least one Lucas factor(

ia

2d+1

)
in B1(i) is equal to 0, i.e., there is at least one Lucas factor satisfying

d ≤ ia < 2d+ 1, which can be counted as

m/2∑
j=1

(m
2

j

)
(d+ 1)m = (d+ 1)m(2

m
2 − 1).

Clearly, ii) and iii) give us the same values. Thus, for k0 = 1, the linear
complexity of ternary Sidel’nikov sequences can be derived as in the theorem. �

Example 1. Let M = 3. Let p = 3d + 2 = 5 and β = 3, where m is even. For
k0 = 0, we have

v3f3 + v4f4 + u3g3 + u4g4 ≡ 0 mod 4
v3g3 + v4g4 + u3f3 + u4f4 ≡ 0 mod 4.

Since f3 = 1, f4 = 2, g3 = 0, and g4 = 2, we have

V1 = v3 + 2v4 + 2u4 ≡ 0 mod 4
V2 = 2v4 + u3 + 2u4 ≡ 0 mod 4.

Therefore, v3 and u3 are multiples of 4 and v4 + u4 is a multiple of 2. And
v3 + v4 = m/2 and u3 + u4 = m/2. Then the linear complexity L3(5) of ternary
Sidel’nikov sequences is written as

L3(5) = pm −
∑

V1≡0 mod 4
V2≡0 mod 4

(v3, v4)!(u3, u4)! = pm −

⎧⎨⎩
m

8 �∑
j=0

(m
2

4j

)⎫⎬⎭
2

.

For k0 = 1, from the above theorem, it can be easily derived as

L3(5) = 2
3m
2 +1 − 2m − 1. �

Now, we will derive the linear complexity of ternary Sidel’nikov sequences for
the case of p ≡ 1 mod 3. The following lemma can be used in the calculation
of Bv(i).
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Lemma 2. Let M and d be positive integers. For p = Md + 1 and 1 ≤ j ≤ d,
we have (

(M − 1)d− j
d− j

)
≡
(

(M − 1)d+ j

d+ j

)
mod p.

Proof. Since Md ≡ −1 mod p, we have

d− i
(M − 1)d− i ≡

(M − 1)d+ i+ 1
d+ i+ 1

mod p.

Then the proof is done by noting that(
(M − 1)d− j

d− j

)
=
(

(M − 1)d
d

) j−1∏
i=0

d− i
(M − 1)d− i

and (
(M − 1)d+ j

d+ j

)
=
(

(M − 1)d
d

) j−1∏
i=0

(M − 1)d+ i+ i

d+ i+ 1
.

�

For M = 3, it can be easily modified as(
2d− j
d

)
≡
(

2d+ j

d

)
mod p. (17)

The following lemmas are need to derive the linear complexity for p = 3d+1.

Lemma 3. Let p = 3d + 1 and k0 
= 1. Let βf ′
= (1 − αL)(1 − k0). For 0 ≤

k ≤ p− 1, let βfk =
(
k
d

)
and vk be the number of

(
k
d

)
among the Lucas factors

of B1(i). Let
∑p−1

j=k vj = m and V (k) =
∑p−1

j=k vjfj . For L ≤ i < 3L, the number
of i satisfying B1(i) ≡ (1 − αL)(1 − k0) mod p and B2(i) = 0 in (9) and (10) is
given as

F1((1− αL)(1− k0)) + F2((1 − αL)(1− k0), 0) = E(d)− E(2d)

where

E(k) =
∑

V (k)≡f ′ mod p−1

(vk, · · · , vp−1)!.

Proof. Clearly, we have

L =
pm − 1

3
=
(p− 1

3

)m−1∑
i=0

pi = d
m−1∑
i−0

pi. (18)
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By Lucas’ theorem, it can be easily derived that

B1(i) =
m−1∏
a=0

(
ia
d

)
= βfi0+fi1+···+fim−1 = (1− αL)(1− k0) ≡ βf ′

mod p.

Then we have

V (d) =
p−1∑
j=d

vjfj = f ′

E(d) =
∑

V (d)≡f ′ mod (p−1)

(vd, · · · , vp−1)!.

Since B2(i) = 0, we have to rule out the case B2(i) 
= 0 from E(d). E(2d)
is the number of i such that all the coefficients ia, 0 ≤ a < m, of its p-ary
expansion are in the range 2d ≤ ia ≤ p− 1, which corresponds to B2(i) 
= 0 and
B1(i) ≡ (1− αL)(1 − k0) mod p. Thus, we prove it. �
Similarly, we can easily obtain the following lemma.

Lemma 4. Let p = 3d + 1. Let βf ′
= B1(i) 
= 0 and βg′

= B2(i) 
= 0. For
0 ≤ k ≤ p − 1, let βfk =

(
k
d

)
and βgk =

(
k
2d

)
. Let

∑p−1
j=2d vj = m, V1 =∑p−1

j=2d vjfj , and V2 =
∑p−1

j=2d vjgj . For 2L ≤ i < 3L, the number of i satisfying
(B1(i), B2(i)) = (c1, c2) is given as

F2(c1, c2) =
∑

V1≡f′ mod (p−1)
V2≡g′ mod (p−1)

(v2d, · · · , vp−1)!. (19)

�
Since p = 3d+1, we have (αL)p−1 = (αL)3 = 1, αL ∈ Fp, and α2L +αL +1 = 0.
Let γ = αL. Note that (1 − γ)(γ + 2) = 2 − γ − γ2 = 3. Then we can derive
the linear complexity of ternary Sidel’nikov sequences for p ≡ 1 mod 3 as in the
following theorem.

Theorem 5. Let n = pm − 1 and p = 3d+ 1 be a prime, where d is a positive
integer. Let 3|n. Then the linear complexity L3(p) over Fp of ternary Sidel’nikov
sequences of period n is given as

L3(p) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−
∑

V (d)≡f ′ mod (p−1)

(vd, · · · , vp−1)! +
∑

V (2d)≡f ′ mod (p−1)

(v2d, · · · , vp−1)!

−
∑

(γ+2)c21−(γ−1)c22=3(1−k0)
c22 �=0

∑
V1≡f′ mod (p−1)
V2≡g′ mod (p−1)

(v2d, · · · , vp−1)!− 1
2 (2− k0),

if k0 
= 1
(2d+ 1)m − 1−

∑
(γ+2)c21−(γ−1)c22=0

c21 �=0, c22 �=0

∑
V1≡f′ mod (p−1)
V2≡g′ mod (p−1)

(v2d, · · · , vp−1)!,

if k0 = 1.
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Proof. Since γ is an element of Fp with order 3, (7) can be represented as

3(1− k0) = (γ + 2)B1(i)− (γ − 1)B2(i). (20)

Similarly to (8), (9), and (10), we have to consider the following three equa-
tions.

0 = 3(1− k0), for 0 ≤ i < L (21)
(γ + 2)B1(i) = 3(1− k0), for L ≤ i < 2L
(γ + 2)B1(i) + (1− γ)B2(i) = 3(1− k0), for 2L ≤ i < 3L. (22)

Case 1) k0 
= 1;
Case 1-a) 0 ≤ i < L: Clearly, (21) cannot be satisfied. Thus A−i 
= 0, for
0 ≤ i < L.
Case 1-b) L ≤ i < 2L: We have to count the number of i satisfying B1(i) ≡
(1− γ)(1− k0) mod p and B2(i) = 0, i.e., F1((1− γ)(1− k0)).
Case 1-c) 2L ≤ i < 3L: We have to count the number F2(c1, c2) of i satisfying
(22) for (B1(i), B2(i)) = (c1, c2). If c2 = 0, we have c1 = (1 − γ)(1 − k0),
which corresponds to F2((1 − γ)(1 − k0), 0). Lemma 3 gives us the value of
F1((1 − γ)(1 − k0)) + F2((1 − γ)(1 − k0), 0), which includes the cases of Case
1-b). If c2 
= 0, we also have c1 
= 0 and Lemma 4 gives us the value of F2(c1, c2).

Here, we need to exclude the case that all ia’s are equal to p− 1, 0 ≤ a < m.
When ia = p − 1, 0 ≤ a < m, from (17), we have fp−1 = 0, gp−1 = 0, and
vp−1 = m. Thus, counting of i for (c1, c2) = (1, 1) contains the case that all ia’s
are equal to p− 1, 0 ≤ a < m, which occurs only when k0 = 0.

Therefore, the linear complexity L3(p) of ternary Sidel’nikov sequences for
p ≡ 1 mod 3 is given as

L3(p) = n− F1((1− γ)(1− k0))−
∑

(γ+2)c1−(γ−1)c2=3(1−k0)

F2(c1, c2) +
1
2
(2− k0).

Using Lemmas 3 and 4, we prove this case.

Case 2) k0 = 1;
Case 2-a) 0 ≤ i < L: The number of i satisfying (20) is given as F0 = L.
Case 2-b) L ≤ i < 2L: We need to count the number of i satisfying B1(i) =
B2(i) ≡ 0 mod p.
Case 2-c) 2L ≤ i < 3L: We need to count the number of i satisfying (B1(i),
B2(i)) = (c1, c2), where (γ+2)c1−(γ−1)c2 = 0. Note that c1 = c2 = 0 is always
a solution of it. From B1(i) = 0 and B2(i) = 0, there is at least one Lucas factor(
ia

d

)
and

(
ia

2d

)
such that 0 ≤ ia < d. It is equivalent to subtract the number of i

satisfying B1(i) 
= 0 or B2(i) 
= 0 from 2L. Thus, we can easily find the value,
F1(0)+F2(0, 0) = 2L− (2d+1)m +1, where all cases in Case 2-b) are included
but the case of i = pm − 1 is excluded.

Finally, we have to find F2(c1, c2) for nonzero c1 and c2, which is given
by Lemma 4. Therefore, for k0 = 1, the linear complexity L3(p) of ternary
Sidel’nikov sequences for p ≡ 1 mod 3 is given as
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L3(p) = n− L− 2L+ (2d+ 1)m − 1−
∑

(γ+2)c1−(γ−1)c2=0
c1 �=0, c2 �=0

F2(c1, c2).

Using Lemma 4, we prove the theorem. �

For M = 3 and p = 7, the linear complexity of ternary Sidel’nikov sequences is
given in the following example.

Example 2. Let p = 7, β = 3, γ = 2, and M = 3. For k0 = 0, we have

f2 = 0, f3 = 1, f4 = 3, f5 = 1, f6 = 0,
g4 = 0, g5 = 5, g6 = 0.

Then we have v2 + · · ·+ v6 = m and

E(d) =
∑

v3+3v4+v5≡3 mod 6

(v2, · · · , v6)!.

Also we have v4 + v5 + v6 = m and

E(2d) =
∑

3v4+v5≡3 mod 6

(v4, v5, v6)!.

We can calculate the numbers c1 and c2 satisfying (20). Finally, we have

L3(7) = pm −
(
E(d)− E(2d)

)
−

∑
4c1−c2=3

∑
3v4+v5≡f′ mod 6

5v5≡g′ mod 6

(v4, v5, v6)!.

Table 1. Linear complexity of ternary Sidel’nikov sequences for p = 7

m Period k0 = 0 k0 = 1 k0 = 2

pm − 1 γ = 2 γ = 4 γ = 2 γ = 4 γ = 2 γ = 4

3 342 323 315 118 121 322 314

4 2,400 2,301 2,274 607 612 2,307 2,287

5 16,806 16,300 16,236 3,079 3,083 16,300 16,296

6 117,648 115,088 114,988 15,498 15,498 114,956 115,120

7 823,542 810,620 810,633 77,759 77,746 809,863 810,633

8 5,764,800 5,699,809 5,700,521 389,544 389,503 5,697,118 5,699,176

9 40,353,606 40,027,751 40,030,599 1,949,884 1,949,803 40,020,946 40,023,794
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For k0 = 1, from the above theorem, the linear complexity of ternary
Sidel’nikov sequence is given as

L3(7) = 5m −
∑

4c1−c2=0

∑
3v4+v5≡f′ mod 6

5v5≡g′ mod 6

(v4, v5, v6)!− 1.

Table 1 lists the linear complexities L3(7) over F7 of some ternary Sidel’nikov
sequences. �
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Abstract. In this paper we derive a lower bound on the linear com-
plexity and an upper bound on the 1-error linear complexity over Fp of
M -ary Sidel’nikov sequences of period pm − 1 when M ≥ 3 and p ≡ ±1
mod M . In particular, we exactly compute the 1-error linear complex-
ity of ternary Sidel’nikov sequences when p ≡ −1 mod 3 and m ≥ 4.
Furthermore, we give a tighter lower bound on the linear complexity of
ternary and quaternary Sidel’nikov sequences for p ≡ −1 mod M by
a more detailed analysis. Based on these results, we present the ratios
of the linear complexity and the 1-error linear complexity to the period
asymptotically.

Keywords: M -ary sequences, Sidel’nikov sequences, linear complexity,
1-error linear complexity.

1 Introduction

Sidel’nikov introduced M -ary sequences of period pm−1 where p is a prime, m is
a positive integer and M is a divisor of pm− 1, and got their out-of-phase auto-
correlation properties [11]. Later, Lempel, Cohn, and Eastman proposed binary
Sidel’nikov sequences independently and verified that it has optimal autocorre-
lation properties [10].

Linear complexity and k-error linear complexity are considered as important
characteristics of the sequences used in communication systems and cryptogra-
phy. Helleseth and Yang first studied the linear complexity of binary Sidel’nikov
sequences [8]. Helleseth, Kim, and No addressed the linear complexity over Fp

of binary Sidel’nikov sequences and derived their linear complexity for p = 3, 5,
and 7 [6]. Here Fq denotes the finite field of q elements. Later, Helleseth et al.
derived the closed-form expression of the linear complexity over Fp of binary
Sidel’nikov sequences for all prime p [7].
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Recently, Kim et al. studied the linear complexity over Fp ofM -ary Sidel’nikov
sequences and derived their Fourier transforms. In particular, they found the
closed-form expression of the linear complexity of ternary Sidel’nikov sequences
[9].

In this paper we derive a lower bound on the linear complexity over Fp of
M -ary Sidel’nikov sequences of period pm− 1 when p ≡ ±1 mod M and M ≥ 3.
We also derive an upper bound on their 1-error linear complexity over Fp in
the same case. Especially for p ≡ −1 mod 3 and m ≥ 4, their 1-error linear
complexity over Fp is exactly computed. Finally we calculate a tighter lower
bound on the linear complexity of ternary and quaternary Sidel’nikov sequences
for p ≡ −1 mod M by a more detailed analysis.

The outline of this paper is as follows. Section 2 gives some preliminaries
for our presentation. In Section 3, a lower bound on the linear complexity and
an upper bound on the 1-error linear complexity over Fp of M -ary Sidel’nikov
sequences are derived by analyzing their discrete Fourier transforms when p ≡
±1 mod M and M ≥ 3. In Section 4, we exactly compute the 1-error linear
complexity of ternary Sidel’nikov sequences using the discrete Fourier transforms
of the 1-error allowed sequences when p ≡ −1 mod 3 and m ≥ 4. Tighter lower
bounds on the linear complexity of ternary and quaternary Sidel’nikov sequences
are calculated by a more detailed analysis in Section 5. Finally, we summarize
those results and give some concluding remarks in Section 6.

2 Preliminaries

Let S = {s(t)|t = 0, 1, . . . , N − 1} be a sequence of period N = pm − 1. The
linear complexity LC(S) of the sequence S is defined by

LC(S) = N − deg
(
gcd(xN − 1, S(x))

)
where S(x) =

∑N−1
t=0 s(t)xt. For a positive integer k, the k-sphere complexity

SCk(S) of S is given by

SCk(S) = min{LC(S′)| 0 < dH(S, S′) ≤ k}

where S′ is a sequence of period N and dH(X,Y ) denotes the Hamming distance
between X and Y in one period [4]. Then the k-error linear complexity LCk(S)
of S is equal to the minimum between LC(S) and SCk(S) [12]. The discrete
Fourier transform of S is defined by

Ai =
1
N

N−1∑
t=0

s(t)α−it,

where α is a primitive element of the finite field Fpm . Blahut showed that the
linear complexity of a periodic sequence is equal to the Hamming weight of its
discrete Fourier transform [1], [2].

The M -ary Sidel’nikov sequences are defined as follows:
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Definition 1 ([11]). Let p be a prime such that M |pm − 1, and α a primitive
element of the finite field Fpm . For r = 0, 1, · · · ,M − 1, let

Rr =
{
αMl+r − 1

∣∣∣∣0 ≤ l ≤ pm − 1
M

− 1
}
.

An M -ary Sidel’nikov sequence SM = {sM (t)|t = 0, 1, . . . , pm − 2} is defined as

sM (t) =
{
r, αt ∈ Rr,
r0, α

t = −1

where r0 ∈ {0, 1, . . . ,M − 1}. �

In order that SM is balanced, that is, each symbol in {0, 1, · · · ,M − 1} appears
equally in one period, r0 should be zero. In this paper we deal with only the case
that r0 = 0 and M ≥ 3.

3 Linear Complexity and 1-Error Linear Complexity of
M -ary Sidel’nikov Sequences

Kim et al. derived the discrete Fourier transform of M -ary Sidel’nikov sequences
as follows.

Theorem 2 ([9]). Let L = pm−1
M , N = pm − 1, and p > M . For r0 = 0, the

Fourier transform of the M -ary Sidel’nikov sequence SM is given as

NA−i =
N(M − 1)

2
(−1)i −N(−1)i

M−1∑
v=1

Bv(i)
1− αvL

(1)

where Bv(i) =
(

i
vL

)
(−1)−vL. �

Using this Fourier transform, we can derive lower bounds on the linear com-
plexity and upper bounds on the 1-error linear complexity over Fp of M -ary
Sidel’nikov sequences when M ≥ 3 and p ≡ ±1 mod M .

3.1 The Case of p ≡ −1 mod M

Let p = Md − 1 for some integer d ≥ 2. In this case, m must be even so that
M |pm − 1. When M = 3, the Lucas expansions [3] of

(
i
L

)
and

(
i

2L

)
have some

special forms [9]. The following lemma is deduced by generalizing these forms.

Lemma 3. Let p be a prime such that p = Md− 1 for some integer d ≥ 2, and
let L = pm−1

M . For 0 ≤ i ≤ pm − 2 and 1 ≤ v ≤M − 1, we have(
i

vL

)
=
(
im−1

vd− 1

)(
im−2

(M − v)d− 1

)
· · ·
(

i1
vd− 1

)(
i0

(M − v)d− 1

)
mod p (2)

where i =
∑m−1

k=0 ikp
k and 0 ≤ ik ≤ p− 1.
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Proof. Because m is even, vL can be expanded as follows:

vL = v · p
2 − 1
M

(pm−2 + pm−4 + · · ·+ p2 + 1).

Note that

v · p
2 − 1
M

= v · [(d− 1)p+ (M − 1)d− 1]

= (vd− 1)p+ (M − v)d− 1.

Hence

vL = (vd − 1)pm−1 + {(M − v)d − 1}pm−2 + · · ·+ (vd− 1)p+ {(M − v)d − 1}.

Then the form in (2) is easily verified by Lucas’ theorem [3]. �

Note that
(

i
j

)
= 0 mod p if and only if at least one of its Lucas factor is zero.

Using Theorem 2 and Lemma 3, a lower bound on the linear complexity over Fp

of M -ary Sidel’nikov sequences can be derived in the following theorem.

Theorem 4. When M ≥ 3, let p be a prime such that p = Md−1 for some inte-
ger d ≥ 2. Then the linear complexity LC(SM ) over Fp of the M -ary Sidel’nikov
sequence SM of period pm − 1 satisfies the followings:
(a) if M is odd,

LC(SM ) ≥ pm − 1− ε1; (3)

(b) if M is even,
LC(SM ) ≥ pm − 1− ε1 − ε2 + ε3 (4)

where

ε1 = dm ·
M−1∑
j=2

{(M − j)m/2 − (M − j − 1)m/2} · (j − 1)m/2 − 1,

ε2 = dm ·
{(

M

2

)m/2

−
(
M

2
− 1
)m/2

}2

,

ε3 = 2dm ·
{(

M

2

)m/2

−
(
M

2
− 1
)m/2

}
·
{(

M

2
− 1
)m/2

−
(
M

2
− 2
)m/2

}
.

Proof. Firstly, we consider the case that M is odd. Since L = pm−1
M and p =

Md− 1, we have
(αvL)p−1 = α(pm−1)v· (Md−2)

M . (5)

Thus αvL is an element of Fp if and only if v · Md−2
M is an integer. For odd M ,

αvL is not an element of Fp for all 1 ≤ v ≤ M − 1. Let Vi = {v|Bv(i) 
= 0, 1 ≤
v ≤M − 1} for i = 0, 1, · · · , pm − 2. If Vi = ∅, then

A−i = (−1)iM − 1
2


= 0. (6)
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If Vi = {v0} for some v0, 1 ≤ v0 ≤M − 1, we have

A−i = (−1)iM − 1
2
− (−1)i Bv0(i)

1− αv0L
. (7)

In this case A−i is not an element of Fp , and so A−i 
= 0. Therefore, if we
define ε1 as the number of i’s such that |Vi| ≥ 2, then LC(SM ) is greater
than or equal to pm − 1 − ε1. Define ia = min{im−1, im−3, . . . , i1} and ib =
min{im−2, im−4, . . . , i0} where i =

∑m−1
k=0 ikp

k, 0 ≤ ik ≤ p − 1. If we let δa(j)
denote the number of choices for (im−1, im−3, · · · , i1) such that jd − 1 ≤ ia <
(j + 1)d− 1, then

δa(j) = |{(im−1, im−3, · · · , i1)|ia ≥ jd− 1}|
−|{(im−1, im−3, · · · , i1)|ia ≥ (j + 1)d− 1}|

= {(M − j)d}m/2 − {(M − j − 1)d}m/2,

for 1 ≤ j ≤ M − 1. Let δb(j) for j ≥ 1 denote the number of choices for
(im−2, im−4, · · · , i0) such that ib ≥ jd− 1. It is clear that

δb(j) = {(M − j)d}m/2,

for 1 ≤ j ≤M − 1. Except for the case of i = pm − 1, ε1 can be given as

ε1 =
M−1∑
j=2

δa(j)δb(M − j + 1)− 1.

Next, we consider the case that M is even. From (5), it is checked that αvL is
an element of Fp if and only if v = M

2 for 1 ≤ v ≤ M − 1. Then we can deduce
that A−i 
= 0 if |Vi| ≤ 1 and Vi 
= {M

2 }, from (6) and (7). Let ε2 be the number
of i’s such that Vi = {M

2 }. Then

ε2 =
∣∣∣∣{i ∣∣∣∣M2 d− 1 ≤ ia, ib <

(
M

2
+ 1
)
d− 1

}∣∣∣∣
=

[{(
M

2

)
d

}m/2

−
{(

M

2
− 1
)
d

}m/2
]2

.

If Vi =
{

M
2 − 1, M

2

}
or
{

M
2 ,

M
2 + 1

}
, we have

A−i = (−1)iM − 1
2
− (−1)i

{
BM

2
(i)

1− αM
2 L

+
Bv1(i)

1− αv1L

}
,

where v1 = M
2 − 1 or M

2 + 1. In this case, A−i 
= 0. Let ε3 be the number of i’s
such that Vi =

{
M
2 − 1, M

2

}
or
{

M
2 ,

M
2 + 1

}
. Then

ε3 = 2 ·
[{(

M

2

)
d

}m/2

−
{(

M

2
− 1
)
d

}m/2
]

·
[{(

M

2
− 1
)
d

}m/2

−
{(

M

2
− 2
)
d

}m/2
]
.
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Consequently, LC(SM ) is greater than or equal to pm − 1 − ε1 − ε2 + ε3 for
even M . �

Note that

M−1∑
j=2

(M − j)m/2(j − 1)m/2 ≤ (M − 2)
(
M − 1

2

)m

,

M−1∑
j=2

(M − j − 1)m/2(j − 1)m/2 ≥ (M − 3) · (M − 3)m/2.

Applying the above inequalities, ε1 is less than or equal to

dm ·
{

(M − 2)
(
M − 1

2

)m

− (M − 3)
m
2 +1

}
,

which becomes very small compared to pm − 1 when m is large.
Eun et al. computed the 1-error linear complexity over Fp of binary Sidel’nikov

sequences using the discrete Fourier transforms of the one-error allowed se-
quences [5]. In a similar way, we can derive an upper bound on the 1-error
linear complexity over Fp of M -ary Sidel’nikov sequences.

Theorem 5. Let p = Md − 1 be a prime for some integer d ≥ 2. Then the
1-error linear complexity LC1(SM ) over Fp of the M -ary Sidel’nikov sequence
SM of period pm − 1 satisfies

LC1(SM ) ≤ dm
M−1∑
j=1

{(M − j)m/2 − (M − j − 1)m/2} · jm/2 − 1. (8)

Proof. For λ ∈ Fp and 0 ≤ τ ≤ pm− 2, we define an error sequence E(λ, τ) with
Hamming weight ≤ 1 and period pm − 1 as follows:

E(λ, τ) = {eλ,τ (t)| eλ,τ (t) = λI(αt−τ + 1), 0 ≤ t ≤ pm − 2},

where I(0) = 1 and I(x) = 0 for x 
= 0. Then a one-error allowed sequence
SM (λ, τ) is defined as

SM (λ, τ) = {sM (t) + eλ,τ (t)|0 ≤ t ≤ pm − 2}.

The discrete Fourier transform A−i(λ, τ) of SM (λ, τ) is given by

A−i(λ, τ) = (−1)i

(
M − 1

2
− λατi

)
− (−1)i

M−1∑
v=1

Bv(i)
1− αvL

. (9)

Thus

A−i

(
M − 1

2
, 0
)

= −(−1)i
M−1∑
v=1

Bv(i)
1− αvL

. (10)
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A necessary condition for A−i

(
M−1

2 , 0
)

= 0 is that Bv(i) 
= 0 for some v,

1 ≤ v ≤M − 1. If we denote the number of such i’s as ε, then

ε =
M−1∑
j=1

δa(j)δb(M − j)− 1 = dm
M−1∑
j=1

{(M − j)m/2− (M − j− 1)m/2} · jm/2− 1.

(11)
Therefore,

LC1(SM ) ≤ LC

(
SM

(
M − 1

2
, 0
))
≤ ε.

�

From Theorems 4 and 5, it can be deduced that LC(SM )/(pm−1) goes to 1 and
LC1(SM )/(pm − 1) approaches 0 when m increases.

3.2 The Case of p ≡ 1 mod M

In this case, m can be any positive integer such that M |pm − 1. Note that αvL

belongs to Fp for all 1 ≤ v ≤M −1 because M |(p−1). Let p = Md+1 for some
positive integer d then

vL = vd(pm−1 + pm−2 + · · ·+ 1).

Therefore, (
i

vL

)
=
(
im−1

vd

)(
im−2

vd

)
· · ·
(
i0
vd

)
mod p. (12)

Using this expression, the following theorem is easily derived.

Theorem 6. Let p = Md + 1 be a prime for some positive integer d. Then
the linear complexity LC(SM ) over Fp of the M -ary Sidel’nikov sequence SM of
period pm − 1 satisfies

LC(SM ) ≥ pm − {(M − 1)d+ 1}m.

The 1-error linear complexity LC1(SM ) satisfies

LC1(SM ) ≤ {(M − 1)d+ 1}m − 1.

Proof. For i =
∑m−1

k=0 ikp
k, let ic = min{im−1, im−2, . . . , i0}. If ic < d then

Bv(i) = 0 for all 1 ≤ v ≤ M − 1. In that case, A−i 
= 0 from (1) and
A−i

(
M−1

2 , 0
)

= 0 from (10). Let ε′ be the number of i’s such that ic < d.
Then

ε′ = pm − 1− |{i|ic ≥ d, 0 ≤ i ≤ pm − 2}|
= pm − {(M − 1)d+ 1}m.

It is clear that
LC(SM ) ≥ ε′,
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and

LC1(SM ) ≤ LC

(
SM

(
M − 1

2
, 0
))
≤ pm − 1− ε′.

�
When p ≡ 1 mod M , Theorem 6 tells us that LC(SM )/(pm − 1) goes to 1 and
LC1(SM )/(pm−1) approaches 0 asymptotically like the case of p ≡ −1 mod M .

4 1-Error Linear Complexity of Ternary Sidel’nikov
Sequences

In this section we derive the 1-error linear complexity over Fp of ternary
Sidel’nikov sequences when p ≡ −1 mod 3 and m ≥ 4. The following result
has a form similar to that of the binary case [5].

Theorem 7. Let p = 3d − 1 be a prime with some integer d ≥ 2. Then the
1-error linear complexity LC1(S3) over Fp of the ternary Sidel’nikov sequence
S3 of period pm − 1 with m ≥ 4 is given by

LC1(S3) = (2 · 2m/2 − 1)dm − 1.

Proof. From (9), the discrete Fourier transform A−i(λ, τ) of S3(λ, τ) is given by

A−i(λ, τ) = (−1)i(1−λατi)− (−1)i

3

{((
i

L

)
−
(
i

2L

))
αL + 2

(
i

L

)
+
(
i

2L

)}
.

(13)
We consider the next four cases with respect to (λ, τ).

Case i) (λ, τ) = (1, 0): Note that A−i(1, 0) = 0 if and only if
(

i
L

)
=
(

i
2L

)
= 0

by (13). Thus LC(S3(1, 0)) is equal to the number of i’s such that
(

i
L

)
is nonzero

or
(

i
2L

)
is nonzero. Considering the Lucas expansion of

(
i
L

)
, we have∣∣∣∣{i ∣∣∣∣( iL

)

= 0, 0 ≤ i ≤ pm − 2

}∣∣∣∣ = |{i|ia ≥ d− 1 and ib ≥ 2d− 1}|

= (2d)m/2 · dm/2 − 1.

Similarly, ∣∣∣∣{i ∣∣∣∣( i

2L

)

= 0, 0 ≤ i ≤ pm − 2

}∣∣∣∣ = 2m/2 · dm − 1

and ∣∣∣∣{i ∣∣∣∣( iL
)

= 0 and

(
i

2L

)

= 0, 0 ≤ i ≤ pm − 2

}∣∣∣∣ = dm − 1.

Therefore,

LC(S3(1, 0)) = (2m/2 ·dm−1)+(2m/2 ·dm−1)− (dm−1) = (2 ·2m/2−1)dm−1.
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Case ii) λ = 0: Note that LC(S3(0, τ)) is equal to LC(S3), which is greater
than pm − dm by (3). Since pm − dm ≥ (2 · 2m/2 − 1)dm − 1 for m ≥ 4, we have

LC(S3(0, τ)) ≥ LC(S3(1, 0))

for all 0 ≤ τ ≤ pm − 2, m ≥ 4.

Case iii) λ 
= 0, ατ ∈ Fp, and (λ, τ) 
= (1, 0): Let C∗ be the number of i’s such
that A−i(λ, τ) = 0. In this case, by (13),

C∗ =
∣∣∣∣{i ∣∣∣∣( iL

)
=
(
i

2L

)
and

(
i

L

)
= 1− λατi

}∣∣∣∣
≤
∣∣∣∣{i ∣∣∣∣( iL

)
=
(
i

2L

)
= 0 and ατi = λ−1

}∣∣∣∣
+
∣∣∣∣{i ∣∣∣∣( iL

)
=
(
i

2L

)

= 0 and ατi 
= λ−1

}∣∣∣∣
≤
∣∣{i ∣∣ατi = λ−1

}∣∣+ ∣∣∣∣{i ∣∣∣∣( iL
)

= 0 and

(
i

2L

)

= 0
}∣∣∣∣ .

Because
∣∣{i ∣∣ατi = λ−1

}∣∣ ≤ pm−1
2 and

∣∣{i ∣∣( i
L

)

= 0 and

(
i

2L

)

= 0
}∣∣ = dm − 1,

we have
LC(S3(λ, τ)) = pm − 1− C∗ ≥ pm − 1

2
− dm + 1.

Therefore, LC(S3(λ, τ)) is greater than or equal to LC(S3(1, 0)) for m ≥ 4.

Case iv) λ 
= 0, ατ /∈ Fp: If ατi = λ−1 and
(

i
L

)
=
(

i
2L

)
= 0 then A−i(λ, τ) is

zero. On the other hand, if ατi 
= λ−1 and
(

i
L

)
=
(

i
2L

)
= 0 then A−i(λ, τ) 
= 0.

Therefore,

C∗ ≤
∣∣∣∣{i ∣∣∣∣ατi = λ−1 and

(
i

L

)
=
(
i

2L

)
= 0
}∣∣∣∣

+
∣∣∣∣{i ∣∣∣∣ατi 
= λ−1 and

((
i

L

)

= 0 or

(
i

2L

)

= 0

)}∣∣∣∣
≤
∣∣{i ∣∣ατi = λ−1

}∣∣+ ∣∣∣∣{i ∣∣∣∣( iL
)

= 0 or

(
i

2L

)

= 0
}∣∣∣∣ .

Note that |{i|ατi = λ−1}| ≤ pm−1
3 since ατ is not an element of Fp. Further-

more, we know that |{i|
(

i
L

)

= 0 or

(
i

2L

)

= 0}| = (2 · 2m/2 − 1)dm − 1 from the

computation of Case i). Therefore,

LC(S3(λ, τ)) = pm − 1− C∗ ≥ 2
3
(pm − 1)− (2 · 2m/2 − 1)dm + 1.

For m ≥ 4, LC(S3(λ, τ)) is equal to or greater than LC(S3(1, 0)).
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From the results for the above four cases, we have

LC(S3(1, 0)) ≤ LC(S3(λ, τ)) for all λ ∈ Fp, 0 ≤ τ ≤ pm − 2

when m ≥ 4. So the 1-error linear complexity over Fp of S3 is equal to
LC(S3(1, 0)) under given conditions. �

5 Linear Complexity of Ternary and Quaternary
Sidel’nikov Sequences

In this section a more detailed analysis is applied to computation of lower bounds
on the linear complexity of ternary and quaternary Sidel’nikov sequences. The
following theorem shows a lower bound on the linear complexity over Fp of
ternary Sidel’nikov sequences for p ≡ −1 mod 3, which is closer to the period
than the bound calculated from (3).

Theorem 8. Let p = 3d−1 be a prime with some integer d ≥ 2. Then the linear
complexity LC(S3) over Fp of the ternary Sidel’nikov sequence S3 of period pm−1
satisfies

LC(S3) ≥ pm − 1− dm−1 ·
⌊
d+ 2

3

⌋
. (14)

Proof. From (1), the equivalent condition for A−i = 0 is(
i

L

)
=
(
i

2L

)
= 1 mod p. (15)

Let i =
∑m−1

k=0 ikp
k where 0 ≤ ik ≤ p−1. From the expression in (2), the number

of possible choices for (im−1, im−2, · · · , i1) satisfying (15) is dm−1 because 2d−
1 ≤ ik ≤ 3d− 2 for all 0 ≤ k ≤ m− 1. For a fixed (im−1, im−2, · · · , i1), suppose
that (15) is satisfied when i0 = x for some x, 2d − 1 ≤ x ≤ 3d − 2. Then (15)
is not satisfied for i0 = x+ 1, because

(
x+1
2d−1

)

=
(

x
2d−1

)
mod p . Also, (15) is not

satisfied for i0 = x+ 2 since(
x+ 2
2d− 1

)
=

(x+ 2)(x+ 1)
(x+ 3− 2d)(x+ 2− 2d)

(
x

2d− 1

)

=
(

x

2d− 1

)
mod p

for 2d − 1 ≤ x ≤ 3d − 2. Thus the number of i0’s satisfying (15) is less than or
equal to

⌊
d−1
3

⌋
+ 1. Therefore, the number of i’s such that A−i = 0 is less than

or equal to

dm−1

(⌊
d− 1

3

⌋
+ 1
)
.

�

Remark: In Theorem 8, if
(
2d−1
2d−1

)
,
(

2d
2d−1

)
, · · · ,

(
3d−2
2d−1

)
are all distinct over Fp,

then LC(S3) satisfies the following:
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Table 1. Lower bounds on the normalized linear complexity and upper bounds on the
normalized 1-error linear complexity with respect to the period, when M = 3, 4 and
p = 11

m l3/(p
m − 1) h3/(p

m − 1) l4/(p
m − 1) h4/(p

m − 1)

2 0.9333 0.3917 0.9500 0.4417

4 0.9913 0.1223 0.9816 0.1438

6 0.9988 0.0347 0.9931 0.0420

8 0.9998 0.0095 0.9977 0.0118

LC(S3) ≥ pm − 1− dm−1.

In fact, this bound holds for any prime p such that p ≡ −1 mod 3 and p ≤ 29.
�

From the similar calculation, a lower bound on the linear complexity of quater-
nary Sidel’nikov sequences with p ≡ −1 mod 4 can be derived.

Theorem 9. Let p = 4d−1 be a prime with some integer d ≥ 2. Then the linear
complexity LC(S4) over Fp of the quaternary Sidel’nikov sequence S4 of period
pm − 1 satisfies

LC(S4) ≥ pm − 1− γ(d) · dm−1, (16)

where

γ(d) =
{

(2m−1 − 2
m
2 − 2

m
2 −1 + 1) ·

⌊
2d+ 2

3

⌋
+ 2

m
2 ·
⌊
d+ 2

3

⌋}
.

Proof. See Appendix. �

Finally we give an example for the cases M = 3 and 4.

Example: Let l3 and l4 be the lower bounds on the linear complexity given in
(14) and (16), respectively. Also, let h3 and h4 be the upper bounds on the 1-error
linear complexity obtained by putting M = 3 and M = 4 to (8), respectively.
When p = 11, we have

l3 = (11m − 1)− 2 · 4m−1,

l4 = (11m − 1)− 2 · 3m−1 · (2m−1 − 2
m
2 + 1),

h3 = (2
m
2 +1 − 1) · 4m − 1,

h4 = (2 · 3 m
2 − 2

m
2 +1 + 2m) · 3m − 1.

Table 1 shows their proportions to the period 11m − 1 according to m. �
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6 Conclusion

We derived a lower bound on the linear complexity over Fp of M -ary Sidel’nikov
sequences of period pm − 1 when M ≥ 3 and p ≡ ±1 mod M . We also derived
upper bound on their 1-error linear complexity in the same cases. For both
ternary and quaternary cases, we derived tighter lower bounds on their linear
complexity than those calculated by putting M = 3, 4 to the general results,
respectively. For the case that p ≡ −1 mod 3 and m ≥ 4, the exact value of the
1-error linear complexity over Fp of ternary Sidel’nikov sequences was derived.
From those results, we can deduce that the linear complexity over Fp of M -ary
Sidel’nikov sequences is almost the same as the period and that the ratio of the
1-linear complexity over Fp to the period is almost zero, when the period goes
to infinity.
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Appendix

Proof of Theorem 9. The equivalent condition for A−i = 0 is that

3 =
((

i

L

)
−
(
i

3L

))
αL +

(
i

L

)
+
(
i

2L

)
+
(
i

3L

)
. (17)

Define
(

i
L

)∗
,
(

i
2L

)∗
and

(
i

3L

)∗
as follows:(

i

L

)∗
=
(
im−1

d− 1

)(
im−2

3d− 1

)
· · ·
(

i1
d− 1

)
,(

i

2L

)∗
=
(
im−1

2d− 1

)(
im−2

2d− 1

)
· · ·
(

i1
2d− 1

)
,(

i

3L

)∗
=
(
im−1

3d− 1

)(
im−2

d− 1

)
· · ·
(

i1
3d− 1

)
mod p,

where i =
∑m−1

k=0 ikp
k, 0 ≤ ik ≤ p − 1. The set of i’s satisfying (17) can be

divided into two classes.

Case i)
(

i
L

)
=
(

i
3L

)
= 0 and

(
i

2L

)
=3: Because

(
i

2L

)

= 0, we have 2d− 1 ≤ ik ≤

4d− 2 for all 0 ≤ k ≤ m− 1.

Subcase a.
(

i
L

)∗
=
(

i
3L

)∗
=0: Let θa be the number of choices for (im−1, im−2,

· · · , i1) such that
(

i
L

)∗
=
(

i
3L

)∗
= 0 and

(
i

2L

)∗ 
= 0. Then

θa =
∣∣∣∣{(im−1, · · · , i1)

∣∣∣∣( i

2L

)∗

= 0
}∣∣∣∣

−
∣∣∣∣{(im−1, · · · , i1)

∣∣∣∣( i

2L

)∗

= 0 and

((
i

L

)∗

= 0 or

(
i

3L

)

= 0
)}∣∣∣∣

= (2d)m−1 −
{
(2d)

m
2 · dm

2 −1 + (2d)
m
2 −1 · dm

2 − dm−1
}

= (2m−1 − 2
m
2 − 2

m
2 −1 + 1) · dm−1.

From the proof of Theorem 8, it can be easily verified that the number of
i0’s satisfying

(
i

2L

)
= 3 for a given (im−1, im−2, · · · , i1) is less than or equal

to
(⌊

2d−1
3

⌋
+ 1
)
.

Subcase b.
(

i
L

)∗ 
= 0, and
(

i
3L

)∗
= 0: Let θb be the number of choices for

(im−1, im−2, · · · , i1) such that
(

i
L

)∗ 
= 0,
(

i
2L

)∗ 
= 0 and
(

i
3L

)∗
= 0. Then

θb = (2d)
m
2 · dm

2 −1 − dm−1

= (2
m
2 − 1) · dm−1.

Note that 2d − 1 ≤ i0 ≤ 3d − 2 since
(

i
L

)
= 0 holds. Therefore, the number of

i0’s satisfying
(

i
2L

)
= 3 for a given (im−1, im−2, · · · , i1) is less than or equal to(⌊

d−1
3

⌋
+ 1
)
.
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Subcase c.
(

i
3L

)∗ 
= 0: In this case,
(

i
3L

)
cannot be zero because

(
i0

d−1

)

= 0.

Case ii)
(

i
L

)
=
(

i
3L

)

= 0 and

(
i

2L

)
= 3 − 2

(
i
L

)
: The number of choices for

(im−1, im−2, · · · , i1) such that
(

i
L

)∗ 
= 0 and
(

i
3L

)∗ 
= 0 is equal to dm−1. Note
that 3d− 1 ≤ i0 ≤ 4d− 2 since

(
i
L

)

= 0 and

(
i

3L

)

= 0. Hence the number of i0’s

satisfying
(

i
L

)
=
(

i
3L

)

= 0 for a given (im−1, im−2, · · · , i1) is less than or equal to(⌊

d−1
3

⌋
+ 1
)
.

From the results in Cases i) and ii), we have

LC(S4) ≥ pm − 1− γ(d) · dm−1,

where
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ing function and expected value for the 1-error linear complexity of 2n-
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plexity of 2n-periodic binary sequences are obtained. Using these proper-
ties, we characterize the 2n-periodic binary sequences with fixed 1-error
linear complexity. Along the way, we obtain a new approach to derive the
counting function for the 1-error linear complexity of 2n-periodic binary
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linear complexity and locating the error positions for 2n-periodic binary
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1 Introduction

Let S = (s0, s1, s2, . . .) be a binary sequence, that is, a sequence with terms in
the binary field F2 = {0, 1}. For a positive integer N , the sequence S is called
N -periodic if si+N = si for all i ≥ 0. The N -periodic binary sequence S can be
completely described by the N -tuple

S(N) = (s0, s1, . . . , sN−1).

The polynomial corresponding to the N -periodic sequence S is defined as

S(x) = s0 + s1x+ s2x
2 + · · ·+ sN−1x

N−1.
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Definition 1. The linear complexity L(S) of an N -periodic binary sequence S is
the smallest nonnegative integer l for which there exist coefficients d1, d2, . . . , dl ∈
F2 such that

sj + d1sj−1 + · · ·+ dlsj−l = 0 for all j ≥ l.

Note that L(S) = 0 if S is the zero sequence. Obviously, we always have 0 ≤
L(S) ≤ N . Note that if S is not the zero sequence, then L(S) is the length
of the shortest linear feedback shift register that can generate S. For a general
introduction to the theory of linear feedback shift register sequences, we refer
the reader to [8, Chapter 8] and the references therein.

The following lemma gives a relationship between the linear complexity L(S)
of an N -periodic binary sequence S and its corresponding polynomial S(x) (see
[2, pp. 86–87]).

Lemma 1. The linear complexity L(S) of the N -periodic binary sequence S with
S(N) = (s0, s1, . . . , sN−1) is given by

L(S) = N − deg(gcd(xN − 1,S(x))), (1)

where S(x) = s0 + s1x+ s2x
2 + · · ·+ sN−1x

N−1 is the corresponding polynomial.

Given two binary vectors a = (a0, a1, . . . , am−1) and b = (b0, b1, . . . , bm−1) in
Fm

2 , the Hamming distance dH(a,b) between a and b is the number of coor-
dinates in which they differ. The Hamming weight wH(b) of a vector b is the
number of nonzero coordinates in b. For any two N -periodic binary sequences
S and T, the Hamming distance dH(S,T) between S and T is defined as the
Hamming distance between S(N) and T(N). The Hamming weight wH(S) of S
is defined as the Hamming weight of S(N).

The notion of k-error linear complexity Lk(S) of an N -periodic binary se-
quence S was introduced in [1], [2], and [23] as follows.

Definition 2. For an integer 0 ≤ k ≤ N , the k-error linear complexity Lk(S)
of an N -periodic binary sequence S is defined as

Lk(S) = min
T

L(T), (2)

where the minimum is over all N -periodic binary sequences T with dH(T,S) ≤ k.
In other words,

Lk(S) = min
E

L(S + E), (3)

where the minimum is over all N -periodic binary sequences E with wH(E) ≤ k.

The linear complexity and the k-error linear complexity of sequences are impor-
tant security measures for stream cipher systems. A cryptographically strong
sequence should not only have a large linear complexity, but also altering a few
terms should not cause a significant decrease of the linear complexity. That is,
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the k-error linear complexity of the sequence should also be large for certain
small values of k.

In this paper, we consider 2n-periodic binary sequences, i.e., N = 2n. Note
that

x2n − 1 = (x− 1)2
n

. (4)

Rueppel [21, Chapter 4] determined the counting function for the linear com-
plexity of 2n-periodic binary sequences, i.e., the number of 2n-periodic binary
sequences with fixed linear complexity. Using (4) and Lemma 1, it is easy to
characterize the 2n-periodic binary sequences with fixed linear complexity.

Lemma 2. Let N (L) denote the number of 2n-periodic binary sequences with
given linear complexity L, 0 ≤ L ≤ 2n. Then

N (0) = 1 and N (L) = 2L−1 for 1 ≤ L ≤ 2n. (5)

Let A(L) denote the set of 2n-periodic binary sequences with given linear com-
plexity L, 0 ≤ L ≤ 2n. Then A(0) = {(0, 0, 0, . . .)} and A(L), where 1 ≤ L ≤ 2n,
is equal to the set of 2n-periodic binary sequences S with the corresponding poly-
nomials

S(x) = (x− 1)2
n−La(x),

where a(x) is a binary polynomial with deg(a(x)) ≤ L− 1 and a(1) 
= 0.

The counting function and expected value for the k-error linear complexity of pe-
riodic sequences have been studied in [9]–[20]. Recently, using fast algorithms for
computing the linear complexity and the k-error linear complexity of 2n-periodic
binary sequences, Meidl [10] determined the counting function and expected
value for the 1-error linear complexity of 2n-periodic binary sequences. In this
paper, we study the linear complexity and the 1-error linear complexity of 2n-
periodic binary sequences. Some interesting properties of the linear complexity
and the 1-error linear complexity of 2n-periodic binary sequences are obtained.
Using these properties, we characterize the 2n-periodic binary sequences with
fixed 1-error linear complexity. Along the way, we obtain a new approach to de-
rive the counting function for the 1-error linear complexity of 2n-periodic binary
sequences. Finally, we give new fast algorithms for computing the 1-error linear
complexity and locating the error positions for 2n-periodic binary sequences.

2 Some Properties of A(L)

Recall that A(L) is the set of 2n-periodic binary sequences with given linear
complexity L, 0 ≤ L ≤ 2n. In this section, we present some interesting properties
of A(L). These properties will be used in the next section to characterize the
2n-periodic binary sequences with fixed 1-error linear complexity. We start with
the following simple lemma.

Lemma 3. Let S be a 2n-periodic binary sequence. Then L(S) = 2n if and only
if the Hamming weight of S is odd.
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Proof. This result was mentioned in [10]. For completeness, we give a simple
proof here. It follows from (4) and Lemma 1 that

L(S) = 2n − deg(gcd((x − 1)2
n

,S(x))).

Hence, L(S) = 2n if and only if S(1) 
= 0, that is, the Hamming weight of S is
odd. �

Now we consider A(L) with 1 ≤ L < 2n−1.

Theorem 1. For any two distinct sequences S1,S2 ∈ A(L), where 1 ≤ L <
2n−1, we have dH(S1,S2) ≥ 4.

Proof. From Lemma 3 we know that wH(S1) and wH(S2) are even numbers.
Hence dH(S1,S2) is an even number. If dH(S1,S2) = 2, we can assume that

S1(x) = S2(x) + xi + xj , where 0 ≤ i < j ≤ 2n − 1. (6)

Since L(S1) = L(S2) = L, by (4) and Lemma 1 we have

gcd(x2n − 1,S1(x)) = gcd(x2n − 1,S2(x)) = (x− 1)2
n−L. (7)

Hence

deg(gcd(x2n

− 1,S1(x) + S2(x))) ≥ 2n − L > 2n−1. (8)

It follows from (6) that

gcd(x2n − 1,S1(x) + S2(x)) = gcd(x2n − 1, xi + xj)
= gcd(x2n

− 1, xj−i − 1) = xgcd(2n, j−i) − 1.

Therefore

deg(gcd(x2n − 1,S1(x) + S2(x))) = gcd(2n, j − i). (9)

If 0 < j − i ≤ 2n−1, then gcd(2n, j − i) ≤ j − i ≤ 2n−1. If 2n−1 < j − i ≤ 2n− 1,
assume that j − i = 2n−1 + l, 0 < l < 2n−1, then

gcd(2n, j − i) = gcd(2n, 2n−1 + l) = gcd(2n−1, l) ≤ l < 2n−1.

Hence by (9) we have

deg(gcd(x2n

− 1,S1(x) + S2(x))) ≤ 2n−1

which contradicts (8). Hence dH(S1,S2) 
= 2, and so dH(S1,S2) ≥ 4. �

For a 2n-periodic binary sequence S and two integers i and j with 0 ≤ i, j ≤ 2n−1,
denote by Si,j the 2n-periodic binary sequence with corresponding polynomial

Si,j(x) = S(x) + xi + xj . (10)

Next we consider A(L) with 2n−2n−r < L < 2n−2n−r−1, where 1 ≤ r ≤ n−2.
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Theorem 2. For any sequence S ∈ A(L), where 2n − 2n−r < L < 2n − 2n−r−1

for some 1 ≤ r ≤ n−2, and for any two integers 0 ≤ i ≤ 2n−1 and 1 ≤ t ≤ 2r−1,
we have

L(Si,j) = L(S) for j = i⊕ t2n−r,

where ⊕ is the operation of addition modulo 2n. That is, Si,j ∈ A(L) for j =
i⊕ t2n−r.

Proof. Since 2n−2n−r < L(S) = L < 2n−2n−r−1, we have 2n−r−1 < 2n−L(S) <
2n−r. By Lemma 2, we can write the corresponding polynomial of S as

S(x) = (x− 1)2
n−La(x), (11)

where a(x) is a binary polynomial with deg(a(x)) ≤ L − 1 and a(1) 
= 0. Note
that

xi + xi+t2n−r

= xi(xt − 1)2
n−r

= (x− 1)2
n−r

(1 + · · ·+ xt−1)2
n−r

xi.

Therefore

deg(gcd(x2n

− 1, xi + xi+t2n−r

)) = deg(gcd((x − 1)2
n

, xi + xi+t2n−r

))
≥ 2n−r > 2n − L. (12)

By (11) and (12), we have

deg(gcd(x2n − 1,S(x) + xi + xi+t2n−r

)) = 2n − L. (13)

It is easy to see that

gcd(x2n − 1,S(x) + xi + xi⊕t2n−r

) = gcd(x2n − 1,S(x) + xi + xi+t2n−r

).(14)

Hence, the theorem follows from Lemma 1 and (13) and (14). �

Theorem 2 tells us that if 2n − 2n−r < L < 2n − 2n−r−1, where 1 ≤ r ≤ n− 2,
then for any sequence S ∈ A(L) and any integer 0 ≤ i ≤ 2n − 1, there exist
at least 2r − 1 sequences among Si,j , where 0 ≤ j ≤ 2n − 1 and j 
= i, such
that Si,j ∈ A(L). The next theorem shows that there are exactly 2r − 1 such
sequences Si,j ∈ A(L), where j 
= i.

Theorem 3. For any sequence S ∈ A(L), where 2n − 2n−r < L < 2n − 2n−r−1

for some 1 ≤ r ≤ n − 2, and for any integer 0 ≤ i ≤ 2n − 1, the number of the
sequences Si,j ∈ A(L), where 0 ≤ j ≤ 2n−1 and j 
= i, is exactly 2r−1. That is,

{j : Si,j ∈ A(L), 0 ≤ j ≤ 2n − 1, j 
= i} = {j : j = i⊕ t2n−r, 1 ≤ t ≤ 2r − 1},

where Si,j is defined by (10).

Proof. Assume that there is one more j = j1 except j = i ⊕ t2n−r, t =
0, 1, . . . , 2r− 1, such that Si,j1 ∈ A(L). By considering the distribution of the 2r

numbers j = i⊕t2n−r, t = 0, 1, . . . , 2r−1, over the interval [0, 2n−1], we can see
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that there exists j2 among these 2r numbers such that 0 < |j2 − j1| ≤ 2n−r−1.
By Theorem 2, Si,j2 ∈ A(L). Without loss of generality, we assume that j2 > j1.
Since Si,j1 , Si,j2 ∈ A(L), we obtain by Lemma 2,

Si,j1(x) = (x− 1)2
n−La1(x), Si,j2 (x) = (x− 1)2

n−La2(x),

where a1(x) and a2(x) are two distinct binary polynomials with deg(a1(x)) ≤
L − 1, deg(a2(x)) ≤ L − 1, and a1(1) 
= 0, a2(1) 
= 0. It follows from (10) that
Si,j1(x) + Si,j2(x) = xj1 + xj2 . Then

deg(gcd((x− 1)2
n

, xj1 + xj2)) ≥ 2n − L > 2n−r−1. (15)

On the other hand,

deg(gcd((x − 1)2
n

, xj1 + xj2 )) = deg(gcd((x− 1)2
n

, 1 + xj2−j1))
≤ j2 − j1 ≤ 2n−r−1,

which contradicts (15). Hence, there is no more j except j = i ⊕ t2n−r, t =
0, 1, . . . , 2r − 1, such that Si,j ∈ A(L). This completes the proof. �

3 The Characterization

In this section, we use Theorems 1, 2, and 3 to characterize the 2n-periodic
binary sequences with fixed 1-error linear complexity.

Denote by merr(S) the minimum value k for which the k-error linear com-
plexity of a nonzero 2n-periodic binary sequence S is strictly less than the linear
complexity of S, that is,

merr(S) = min{k : Lk(S) < L(S)}. (16)

Kurosawa et al. [6] determined the exact value of merr(S) as follows.

Lemma 4. Let S be a nonzero 2n-periodic binary sequence. Then

merr(S) = 2wH(2n−L(S)), (17)

where wH(j), 0 ≤ j ≤ 2n−1, is the Hamming weight of the binary representation
of j.

Next we need the following lemma to establish the theorems in this section.

Lemma 5. Let S be a 2n-periodic binary sequence. If wH(S) is even, then
L1(S) = L(S). If wH(S) is odd, then L1(S) < L(S) = 2n.

Proof. If wH(S) is even, then L(S) < 2n by Lemma 3. Thus, wH(2n−L(S)) ≥ 1.
Hence by Lemma 4 we get merr(S) ≥ 2. Therefore L1(S) = L(S).

If wH(S) is odd, then L(S) = 2n by Lemma 3. Thus, wH(2n − L(S)) = 0.
Hence by Lemma 4 we get merr(S) = 1. Therefore L1(S) < L(S) = 2n. �
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Theorem 4. Let S be a 2n-periodic binary sequence. If L(S) 
= 2n, 2n − 2n−r,
r = 1, 2, . . . , n, then L1(S + E) = L1(S) = L(S), where E is any 2n-periodic
binary sequence with wH(E) = 1.

Proof. It is easy to see that the result is true if S is the zero sequence. Next we
consider the case where S is a nonzero sequence. Since 2n − L(S) 
= 0, 2j, j =
0, 1, . . . , n − 1, we have wH(2n − L(S)) 
= 0, 1. Hence by Lemma 4 we get
merr(S) ≥ 4. Therefore

L2(S) = L1(S) = L(S). (18)

From the definitions of L1(S + E) and L2(S), we obtain

L1(S + E) ≥ L2(S) = L1(S). (19)

On the other hand, by the definition of L1(S+E) and noting that S = S+E+E,
we have

L1(S + E) ≤ L(S) = L1(S). (20)

Combining (19) and (20), we obtain the theorem. �

Denote by A1(L) the set of 2n-periodic binary sequences with given 1-error
linear complexity L, 0 ≤ L ≤ 2n. Let N1(L) be the number of 2n-periodic
binary sequences with given 1-error linear complexity L, 0 ≤ L ≤ 2n. Denote by
0 the zero sequence. For 0 ≤ i ≤ 2n − 1, denote by Ei the 2n-periodic binary
sequence of weight one with 1 at the position with subscript i in the first period.
Note that E(2n)

i , i = 0, 1, . . . , 2n− 1, form a standard basis for the binary vector
space F2n

2 . It is easy to see that

A1(0) = {0,E0,E1, . . . ,E2n−1}, N1(0) = 2n + 1. (21)

We infer from Lemmas 3 and 5 that

A1(2n) = ∅, N1(2n) = 0. (22)

Theorem 5. If L 
= 0, 2n, 2n − 2n−r, r = 1, 2, . . . , n, then

A1(L) = A(L) ∪ (E0 +A(L)) ∪ (E1 +A(L)) ∪ · · · ∪ (E2n−1 +A(L)). (23)

Furthermore: (i) if 1 ≤ L < 2n−1, then the sets A(L), E0 + A(L), E1 + A(L),
. . ., E2n−1 +A(L) are disjoint and

N1(L) = (1 + 2n)2L−1; (24)

(ii) if 2n − 2n−r < L < 2n − 2n−r−1 for some 1 ≤ r ≤ n − 2, then for any
0 ≤ i ≤ 2n − 1 we have

Ei +A(L) = Ei⊕t2n−r +A(L) for all t = 0, 1, . . . , 2r − 1; (25)
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moreover, the 2n−r + 1 sets A(L), E0 +A(L), E1 +A(L), . . ., E2n−r−1 +A(L)
are disjoint,

A1(L) = A(L) ∪ (E0 +A(L)) ∪ (E1 +A(L)) ∪ · · · ∪ (E2n−r−1 +A(L)), (26)

and

N1(L) = (1 + 2n−r)2L−1. (27)

Proof. For any S ∈ A(L), since L(S) = L 
= 2n, it follows from Lemma 3 that
wH(S) is even. Hence, for any T ∈ Ei +A(L), wH(T) is odd. Therefore

A(L) ∩ (Ei +A(L)) = ∅, i = 0, 1, . . . , 2n − 1. (28)

Moreover, by Lemma 5 and Theorem 4, we have S,T ∈ A1(L). Therefore

A1(L) ⊇ A(L) ∪ (E0 +A(L)) ∪ (E1 +A(L)) ∪ · · · ∪ (E2n−1 +A(L)). (29)

On the other hand, by the definition of the 1-error linear complexity (see Defi-
nition 2), we have

A1(L) ⊆ A(L) ∪ (E0 +A(L)) ∪ (E1 +A(L)) ∪ · · · ∪ (E2n−1 +A(L)). (30)

Hence, (23) follows from (29) and (30).
(i) If 1 ≤ L < 2n−1, then by Theorem 1 the sets A(L), E0 +A(L), . . ., E2n−1 +
A(L) are disjoint. Hence by (23) and Lemma 2,

N1(L) = |A1(L)| = (1 + 2n)|A(L)| = (1 + 2n)N (L) = (1 + 2n)2L−1.

(ii) If 2n − 2n−r < L < 2n − 2n−r−1 for some 1 ≤ r ≤ n − 2, then by Theorem
3, for any sequence S ∈ A(L), the sequence Ei + S appears in exactly 2r sets
Ei⊕t2n−r +A(L), t = 0, 1, . . . , 2r − 1. This implies that

(Ei +A(L)) ∩ (Ej +A(L)) = ∅ for any 0 ≤ i < j ≤ 2n−r − 1 (31)

and

Ei +A(L) = Ei⊕t2n−r +A(L), t = 0, 1, . . . , 2r − 1, (32)

since |Ei +A(L)| = |Ei⊕t2n−r +A(L)| = |A(L)| = N (L). Hence, by (23), (28),
(31), and (32), the 2n−r+1 sets A(L), E0+A(L), E1+A(L), . . ., E2n−r−1+A(L)
are disjoint and

A1(L) = A(L) ∪ (E0 +A(L)) ∪ (E1 +A(L)) ∪ · · · ∪ (E2n−r−1 +A(L)).

This implies that

N1(L) = N (L) + 2n−rN (L) = (1 + 2n−r)2L−1.

This completes the proof. �



96 F.-W. Fu, H. Niederreiter, and M. Su

Remark 1: From Lemma 2 and Theorem 5, we deduce that:
(i) if 1 ≤ L < 2n−1, then A1(L) is the set of 2n-periodic binary sequences S with
the corresponding polynomials

S(x) = (x− 1)2
n−La(x) or xi + (x− 1)2

n−La(x), 0 ≤ i ≤ 2n − 1,

where a(x) is a binary polynomial with deg(a(x)) ≤ L− 1 and a(1) 
= 0;
(ii) if 2n − 2n−r < L < 2n − 2n−r−1 for some 1 ≤ r ≤ n− 2, then A1(L) is the
set of 2n-periodic binary sequences S with the corresponding polynomials

S(x) = (x − 1)2
n−La(x) or xi + (x− 1)2

n−La(x), 0 ≤ i ≤ 2n−r − 1,

where a(x) is a binary polynomial with deg(a(x)) ≤ L− 1 and a(1) 
= 0.

The remaining values of L are covered by the following theorem.

Theorem 6. If L = 2n − 2n−r, r = 1, 2, . . . , n, then

A1(L) = A(L), N1(L) = 2L−1. (33)

Proof. For any sequence S ∈ A(L), we have L(S) = L 
= 2n. Hence by Lemma 3,
wH(S) is even. Therefore by Lemma 5, L1(S) = L(S) = L. That is, S ∈ A1(L).
Hence,

A1(L) ⊇ A(L), N1(L) ≥ N (L) = 2L−1. (34)

Assume that

N1(L) = N (L) + β(L) = 2L−1 + β(L) for L = 2n − 2n−r, r = 1, . . . , n. (35)

By (34), β(L) ≥ 0 for all those L. Now we prove that β(L) = 0 for all those L.
This implies that (33) holds. Note that

22n

=
2n∑

L=0

N1(L)

=
2n−1−1∑

L=0

N1(L) +
n−2∑
r=1

2n−2n−r−1−1∑
L=2n−2n−r+1

N1(L)

+
n∑

r=1

N1(2n − 2n−r) +N1(2n). (36)

By (21), (22), and (24),

2n−1−1∑
L=0

N1(L) +N1(2n) = (2n + 1)

⎛⎝1 +
2n−1−1∑

L=1

2L−1

⎞⎠
= 22n

(2−2n−1+n−1 + 2−2n−1−1). (37)
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It follows from (27) that

n−2∑
r=1

2n−2n−r−1−1∑
L=2n−2n−r+1

N1(L) =
n−2∑
r=1

2n−2n−r−1−1∑
L=2n−2n−r+1

(2n−r + 1)2L−1

=
n−2∑
r=1

(2n−r + 1)22n−2n−r

(22n−r−1−1 − 1)

= 22n
n−1∑
i=2

(2i + 1)(2−2i−1−1 − 2−2i

)

= 22n

[
3
4
− 2−2n−1+n−1 − 2−2n−1−1 − 1

2

n−1∑
i=1

2−2i

]
.

(38)

By (35) we have

n∑
r=1

N1(2n − 2n−r) =
n∑

r=1

22n−2n−r−1 +
n∑

r=1

β(2n − 2n−r)

= 22n

[
1
4

+
1
2

n−1∑
i=1

2−2i

]
+

n∑
r=1

β(2n − 2n−r). (39)

From (36)–(39) we obtain

22n

= 22n

+
n∑

r=1

β(2n − 2n−r),

which implies that β(L) = 0 for L = 2n − 2n−r, r = 1, 2, . . . , n. �

Remark 2: From Lemma 2 and Theorem 6, we infer that if L = 2n − 2n−r,
r = 1, 2, . . . , n, then A1(L) is the set of 2n-periodic binary sequences S with the
corresponding polynomials

S(x) = (x− 1)2
n−La(x),

where a(x) is a binary polynomial with deg(a(x)) ≤ L− 1 and a(1) 
= 0.

Remark 3: Using fast algorithms for computing the linear complexity and the
k-error linear complexity of 2n-periodic binary sequences, Meidl [10, Theorem 1]
determined the number of 2n-periodic binary sequences with linear complexity
2n and given 1-error linear complexity and implicitly obtainedN1(L) in the proof
of [10, Corollary 1]. In this section, we used algebraic and combinatorial methods
to characterize the sets A1(L) of the 2n-periodic binary sequences with fixed 1-
error linear complexity L. Using the characterizations of A1(L), we explicitly
determined the counting function N1(L) for the 1-error linear complexity of
2n-periodic binary sequences.
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4 New Algorithms

In this section, we present new fast algorithms for computing the 1-error linear
complexity and locating the error positions for 2n-periodic binary sequences.

Games and Chan [3] designed a fast algorithm for computing the linear com-
plexity of a 2n-periodic binary sequence. The Games-Chan algorithm can be
described as a recursive computation method as follows.

Games-Chan Algorithm: Let S be a 2n-periodic binary sequence with

S(2n) = (s0, s1, . . . , s2n−1).

Decompose S(2n) into its left and right half by

S(2n−1)
L = (s0, s1, . . . , s2n−1−1), S(2n−1)

R = (s2n−1 , s2n−1+1, . . . , s2n−1).

Denote by SL and SR the two 2n−1-periodic binary sequences with the corre-
sponding vectors S(2n−1)

L and S(2n−1)
R , respectively.

(i) If S(2n−1)
L = S(2n−1)

R , then L(S) = L(SL).

(ii) If S(2n−1)
L 
= S(2n−1)

R , then L(S) = 2n−1 + L(SL + SR).
(iii) Apply the above procedure recursively to the 2n−1-periodic binary sequence

SL in (i), or the 2n−1-periodic binary sequence SL + SR in (ii).

There are several algorithms for computing the k-error linear complexity (for
all k) of a 2n-periodic binary sequence, such as the Stamp-Martin algorithm
[23], the Kaida-Uehara-Imamura algorithm [4], the Lauder-Paterson algorithm
[7], and the Sălăgean algorithm [22]. In these algorithms, some cost functions
are introduced and need to be computed. Below we give a fast algorithm for
computing the 1-error linear complexity of a 2n-periodic binary sequence. In
our algorithm, we compute the 1-error linear complexity recursively or reduce
the problem to that of computing the linear complexity of certain sequences
using the Games-Chan algorithm. Moreover, we do not need to compute a cost
function.

Algorithm 1: Let S be a 2n-periodic binary sequence. Let S(2n), S(2n−1)
L ,

S(2n−1)
R , SL, and SR be the same as in the Games-Chan algorithm.

(i) If wH(S) is even, then L1(S) = L(S), and we can use the Games-Chan
algorithm.

(ii) If wH(S) is odd and dH(S(2n−1)
L ,S(2n−1)

R ) = 1, then L1(S) = L(SL) if

wH(S(2n−1)
L ) is even and L1(S) = L(SR) if wH(S(2n−1)

R ) is even, and we
can use the Games-Chan algorithm.

(iii) If wH(S) is odd and dH(S(2n−1)
L ,S(2n−1)

R ) > 1, then L1(S) = 2n−1+L1(SL+
SR).

(iv) Apply the above procedure recursively to the 2n−1-periodic binary sequence
SL + SR in (iii).
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Proof. If wH(S) is even, then by Lemma 5, L1(S) = L(S).
If wH(S) is odd, then by Lemma 5, L1(S) < L(S) = 2n. From the definition

of L1(S) (see Definition 2), we get

L1(S) = min
0≤i≤2n−1

L(S + Ei). (40)

If dH(S(2n−1)
L ,S(2n−1)

R ) = 1, then S(2n−1)
L = S(2n−1)

R + E(2n−1)
t , where 0 ≤ t ≤

2n−1 − 1. From this and the Games-Chan algorithm, we obtain

L(S + Et) = L(SR), L(S + Et+2n−1) = L(SL), (41)
L(S + Ei) > 2n−1, i 
= t, t+ 2n−1. (42)

If wH(S(2n−1)
L ) is even, then wH(S(2n−1)

R ) is odd. Hence by Lemma 3,

L(SL) < L(SR) = 2n−1. (43)

Therefore, by (40)–(43), we have L1(S) = L(SL). In the same way, if wH(S(2n−1)
R )

is even, then L1(S) = L(SR).
If wH(S) is odd and dH(S(2n−1)

L ,S(2n−1)
R ) > 1, then by the Games-Chan algo-

rithm we have

L(S + Ei) = 2n−1 + L(SL + SR + E′
i) for 0 ≤ i ≤ 2n−1 − 1, (44)

L(S + Ei) = 2n−1 + L(SL + SR + E′
i−2n−1) for 2n−1 ≤ i ≤ 2n − 1, (45)

where E′
j is the 2n−1-periodic binary sequence of weight one with 1 at the posi-

tion with subscript j in the first period. Since wH(S) is odd, then wH(SL +SR)
is also odd. Hence by Lemma 5, L1(SL + SR) < L(SL + SR) = 2n−1. From the
definition of 1-error linear complexity, we get

L1(SL + SR) = min
0≤j≤2n−1−1

L(SL + SR + E′
j). (46)

Therefore, by (40) and (44)–(46), we have L1(S) = 2n−1 + L1(SL + SR). This
completes the proof. �

Recall that the 1-error linear complexity of a 2n-periodic binary sequence S is
given by L1(S) = minE L(S + E), where the minimum is taken over all 2n-
periodic binary sequences E with wH(E) ≤ 1. After computing L1(S) using
Algorithm 1, we want to determine all possible 2n-periodic binary sequences E
with wH(E) ≤ 1 such that

L1(S) = L(S + E). (47)

If wH(S) is even, then by Lemmas 3 and 5,

L1(S) = L(S) < L(S + Ei) for all 0 ≤ i ≤ 2n − 1.

Hence, only the zero sequence E = 0 satisfies (47).
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Note that if L1(S) = 2n − 2r, where 1 ≤ r ≤ n, then by Theorem 6,

L(S) = L1(S) = 2n − 2r 
= 2n.

Hence by Lemma 3, wH(S) is even.
If wH(S) is odd, then by Lemma 5, L1(S) < L(S) = 2n. Hence, only some Ei

satisfy (47). Such sequences Ei are called error sequences for S. The subscript i
of an error sequence Ei for S is called an error position for S. Note that the error
positions for S range from 0 to 2n−1. Now we give an algorithm for determining
all error positions for S.

Algorithm 2: Let S be a 2n-periodic binary sequence with odd Hamming
weight.

(i) Compute the 1-error linear complexity L1(S) using Algorithm 1.
(ii) If 1 ≤ L1(S) < 2n−1, there is only one error position for S. At Step 1 of

Algorithm 1, dH(S(2n−1)
L ,S(2n−1)

R ) = 1. Assume that S(2n−1)
L = S(2n−1)

R +

E(2n−1)
m , where 0 ≤ m ≤ 2n−1− 1. If wH(S(2n−1)

R ) is even, the error position

for S is m. If wH(S(2n−1)
L ) is even, the error position for S is m+ 2n−1.

(iii) If 2n−2n−r < L1(S) < 2n−2n−r−1, where 1 ≤ r ≤ n−2, there are exactly
2r error positions for S. Note that 2n − 2n−r = 2n−1 + 2n−2 + · · ·+ 2n−r.
Algorithm 1 proceeds recursively in r+1 steps. At Step i, 1 ≤ i ≤ r+1, we
work with a 2n−i+1-periodic binary sequence Si with odd Hamming weight.
We decompose the binary 2n−i+1-tuple corresponding to Si into its left half
Li and right halfRi. By Algorithm 1, Li andRi are binary 2n−i-tuples with
dH(Li,Ri) > 1 for i = 1, 2, . . . , r and dH(Lr+1,Rr+1) = 1. Assume that
Lr+1 = Rr+1 +E(2n−r−1)

m , where 0 ≤ m ≤ 2n−r−1−1. If wH(Rr+1) is even,
the error positions for S are m+ t2n−r, t = 0, 1, . . . , 2r − 1. If wH(Lr+1) is
even, the error positions for S are m+ 2n−r−1 + t2n−r, t = 0, 1, . . . , 2r − 1.

Proof. If 1 ≤ L1(S) < 2n−1, then by Theorem 5(i) and noting that wH(S) is
odd, there is only one Ei such that L1(S) = L(S +Ei). Hence, there is only one
error position for S. The remaining conclusions in (ii) follow from Algorithm 1
and its proof.

If 2n − 2n−r < L1(S) < 2n − 2n−r−1, where 1 ≤ r ≤ n− 2, then by Theorem
5(ii), Theorem 3, and noting that wH(S) is odd, there exists a unique 0 ≤ l ≤
2n−r − 1 such that

L1(S) = L(S + El⊕t2n−r) for all t = 0, 1, . . . , 2r − 1,
L1(S) 
= L(S + Ei) for all i 
= l ⊕ t2n−r, t = 0, 1, . . . , 2r − 1.

Hence, there are exactly 2r error positions for S. From Algorithm 1 and its proof,
we know that l = m if wH(Rr+1) is even, and l = m + 2n−r−1 if wH(Lr+1) is
even. This completes the proof. �

Next we give an example to illustrate Algorithms 1 and 2. In this example, we
use S to denote both the binary periodic sequence and its corresponding vector.



The Characterization of 2n-Periodic Binary Sequences 101

Example: n = 4 and S = 1011010101111101.
Algorithm 1:
(1) Step 1:

S1 = S = 1011010101111101, L1 = 10110101, R1 = 01111101, dH(L1,R1) = 3.

So L1(S1) = 8 + L1(S2), where S2 = L1 +R1 = 11001000.
(2) Step 2:

S2 = L1 +R1 = 11001000, L2 = 1100, R2 = 1000, dH(L2,R2) = 1.

Note that the weight of L2 is even, so L1(S2) = L(L2) = L(1100) = 3, where
L(1100) is computed using the Games-Chan algorithm. Hence,

L1(S1) = 8 + L1(S2) = 11.

Algorithm 2:
Note that 8 = 24 − 23 < L1(S1) = 11 < 24 − 22 = 12, so there are exactly two
error positions for S. Since L2 = R2 + 0100 and the weight of L2 is even, we
have m = 1 and the two error positions are 1 + 4 = 5 and 1 + 4 + 8 = 13. The
two corresponding error vectors are 0000010000000000 and 0000000000000100.

5 Conclusion

In this paper, we studied the linear complexity and 1-error linear complexity of
2n-periodic binary sequences. First, we gave some interesting properties on the
structure of the sets of 2n-periodic binary sequences with fixed linear complexity.
Next, using these properties, we characterized the 2n-periodic binary sequences
with fixed 1-error linear complexity. Along the way, we described a new approach
to derive the counting function for the 1-error linear complexity of 2n-periodic
binary sequences. Finally, we presented new fast algorithms for computing the
1-error linear complexity and locating the error positions for 2n-periodic binary
sequences. Recently, using the Kaida-Uehara-Imamura algorithm [5] for com-
puting the k-error linear complexity of a pn-periodic sequence over the prime
field Fp, Meidl and Venkateswarlu [15] determined the counting function for the
1-error linear complexity of pn-periodic sequences over the prime field Fp. It is
worthwhile to note that our methods and results in this paper can be directly
generalized to pn-periodic sequences over the prime field Fp.
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Abstract. For odd n, binary sequences of period 2n − 1 with ideal two-
level autocorrelation are investigated with respect to 3- or 5-valued cross-
correlation property between them. At most 5-valued crosscorrelation of
m-sequences is first discussed, which is linked to crosscorrelation of some
other binary two-level autocorrelation sequences. Then, several theorems
and conjectures are established for describing 3- or 5-valued crosscorre-
lation of a pair of binary two-level autocorrelation sequences.

1 Introduction

In code-division multiple access (CDMA) communication systems, a binary two-
level autocorrelation sequence is needed to acquire accurate timing information
of received signals by means of its impulse-like autocorrelation property. In cryp-
tography, the sequence is also required for avoiding correlation attack that ex-
ploits pseudorandom sequences having weak autocorrelation property. In the
last few years, several new binary two-level autocorrelation sequences have been
discovered; Kasami power function (KPF) sequences [3], Welch-Gong (WG) se-
quences [15], and Maschiettie’s hyperoval sequences [12]. Together with tradition-
ally known m-sequences, Gordon-Mills-Welch (GMW) sequences [8], quadratic
residue (QR) sequences, and Hall’s sextic residue sequences, these are all known
binary two-level autocorrelation sequences of period 2n − 1.

For theory and practice of sequences, it would be interesting to study crosscor-
relation of a pair of binary two-level autocorrelation sequences of period 2n− 1.
For odd n, the crosscorrelation has been investigated for following pairs of binary
sequences.

• An m-sequence and its decimations [6] [11] [13] [9] (Gold, Kasami, Welch,
Niho, and some conjectured exponents)
• An m-sequence and a GMW sequence with the same primitive polyno-

mial [5], and a pair of GMW sequences [1] (The crosscorrelations are reduced
to crosscorrelations of m-sequences)
• An m-sequence and a decimated KPF sequence with one particular expo-

nent [3]

� This work was supported by NSERC Grant RGPIN 227700-00.

G. Gong et al. (Eds.): SETA 2006, LNCS 4086, pp. 104–118, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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• An m-sequence and a WG sequence without decimation [7]
• An m-sequence and a hyperoval sequence without decimation [4]
• A pair of KPF sequences without decimations [10]

If maximum crosscorrelation of a pair of binary sequences of period 2n − 1
is much larger than its optimum value achieving the Welch [17] or the Sidel-
nikov bound [16], then the pair is not so attractive for communication and
cryptographic applications. For odd n, therefore, 3-valued crosscorrelation, i.e.,
{0,±2

n+1
2 }, has been intensively studied by many researchers. In this work, we

are also interested in 5-valued crosscorrelation, i.e., {0,±2
n+1
2 ,±2

n+3
2 }, which

might be suboptimal for some applications.
In this paper, we study the 3- or 5-valued crosscorrelation of a pair of binary

two-level autocorrelation sequences of period 2n−1 for odd n, excluding GMW,
QR, and Hall’s sextic residue sequences. In Section 3, at most 5-valued crosscor-
relation of m-sequences is discussed, which is linked to crosscorrelation of some
other sequences. In Section 4, the 3- or 5-valued crosscorrelation of following
pairs is investigated.

• A 5-term KPF sequence and a decimated WG sequence with one new expo-
nent
• An m-sequence and a decimated WG sequence with one new exponent
• An m-sequence and a decimated hyperoval sequence with several new

exponents
• An m-sequence and a decimated 3-term KPF sequence with one new

exponent

With the new results as well as already known ones, relations of binary two-
level autocorrelation sequences are summarized with respect to 3- or 5-valued
crosscorrelation. From our experiments for n = 13, 15, 17, and 19, we observed
that all 3- or 5-valued crosscorrelations of a pair of binary two-level autocorrela-
tion sequences are completely described by the already known and new results
listed above unless both are m-sequences.

2 Preliminaries

In this section, we give preliminary definitions and concepts related to binary
two-level autocorrelation sequences. Following notations will be used throughout
this paper.

- Fq = GF (q) is a finite field with q elements and F∗
q is a multiplicative group

of Fq.
- Let n,m be positive integers with m|n. A trace function from F2n to F2m is

denoted by Trn
m(x), i.e.,

Trn
m(x) = x+ x2m

+ · · ·+ x2m( n
m

−1)
, x ∈ F2n ,

or simply as Tr(x) if m = 1 and a context is clear.
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2.1 Correspondence Between Binary Periodic Sequences and
Functions from F2n to F2

Let S be a set of all binary sequences of period 2n − 1 and F be a set of all
functions from F2n to F2. Any function f(x) in F can be represented as

f(x) =
r∑

i=1

Trni
1 (Aix

ti), Ai ∈ F2ni

where ti is a coset leader of a cyclotomic coset modulo 2ni − 1, and ni|n is
a size of the cyclotomic coset containing ti. For any sequence a = {ai} ∈ S,
there exists f(x) ∈ F such that ai = f(αi), i = 0, 1, · · · , where α is a primitive
element of F2n . Then, f(x) is called a trace representation of a. In particular,
a is an m-sequence if f(x) consists of a single trace term. Also, f(x) is called
an orthogonal function if a is a binary two-level autocorrelation sequence. In
this paper, we will always use its trace representation to represent any binary
two-level autocorrelation sequence.

2.2 Decimation of Periodic Sequences

Let a be a binary sequence of period 2n − 1 and f(x) be a trace representation
of a. Let 0 < s < 2n−1. Then, a sequence b = {bi} is said to be an s-decimation
of a, denoted by a(s), if elements of b are given by bi = asi, i = 0, 1, · · · , where
the multiplication is computed modulo 2n − 1. A trace representation of a(s) is
f(xs), denoted by f (s).

2.3 Crosscorrelation

Crosscorrelation of binary sequences a and b of period 2n − 1 is defined by

Ca,b(τ) =
2n−2∑
i=0

(−1)ai+τ+bi = −1 +
∑

x∈F2n

(−1)f(λx)+g(x) = −1 + Cf,g(λ)

where λ = ατ with 0 ≤ τ ≤ 2n − 2, τ is a phase shift of the sequence a, α is a
primitive element of F2n , and f(x) and g(x) are trace representations of a and
b, respectively. Throughout this paper, we always use Cf,g(λ) to represent the
crosscorrelation of a and b with their trace representations f(x) and g(x).

If Cf,g(λ) belongs to {0,±2
n+1
2 }, then it is called 3-valued. If it belongs to

{0,±2
n+1
2 ,±2

n+3
2 }, on the other hand, it is called 5-valued. (In fact, a term ‘3-

or 5-valued’ means the number of kinds of values that Cf,g(λ) takes, no matter
what its actual values are. In this paper, however, we restrict the term ‘3- or 5-
valued’ by the above definition.) If f(x) = Tr(x), then Cf,g(λ) is the Hadamard
transform of g(x). In particular, Cf,g(λ) is denoted by Hd(λ) if f(x) = Tr(x)
and g(x) = Tr(xd), where the distribution of Hd(λ) is determined by d.
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2.4 Parseval’s Equation

Let f(x), g(x), and h(x) be functions from F2n to F2, respectively, and h(x) be
orthogonal. Then, ∑

x∈F2n

(−1)g(x)+f(x) =
1
2n

∑
x∈F2n

ĝh(x)f̂h(x) (1)

where f̂h(x) =
∑

y∈F2n
(−1)h(xy)+f(y).

2.5 Recently Constructed Binary Two-Level Autocorrelation
Sequences

In this subsection, we briefly introduce three classes of binary two-level autocor-
relation sequences of period 2n − 1 which have been constructed recently.

Kasami Power Function (KPF) Sequences: Let k be an integer of 1 ≤ k <
�n

2 	 with gcd(k, n) = 1. For d = 22k − 2k + 1, consider a set

Bk = {(x+ 1)d + xd + 1| x ∈ F2n}.

Then, its characteristic sequence given by

ai =
{

0, if αi ∈ Bk

1, if αi 
∈ Bk

has an ideal two-level autocorrelation, where the sequence is called the Kasami
power function (KPF) sequence [3]. According to k with gcd(k, n) = 1, there
exist φ(n)

2 inequivalent KPF sequences of period 2n− 1, where φ(·) is the Euler-
totient function. If k = 1, in particular, the KPF sequence is identical to an
m-sequence. Let bk(x) be a trace representation of the KPF sequence. For odd
n, the KPF sequence has a Hadamard equivalence given by

∑
x∈F2n

(−1)Tr(λx)+bk(x2k+1) =
∑

x∈F2n

(−1)Tr(λ
2k+1

3 x)+Tr(x3) = H3(λ
2k+1

3 ) (2)

which is 3-valued [3].

Welch-Gong (WG) Sequences: For n = 3k±1 and d = 22k−2k +1, consider
a map δk(x) = (x+ 1)d + xd and a set

Wk =
{
δk(x), if n is even
F2n \ δk(x), if n is odd.

Then, its characteristic sequence given by

ai =
{

0, if αi ∈Wk

1, if αi 
∈Wk
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has an ideal two-level autocorrelation [14]. This sequence is identical to the
Welch-Gong sequence, which is obtained from the Welch-Gong transformation
of the 5-term sequences [15]. Let wk(x) be a trace representation of the WG
sequence. For odd n, the WG sequence has a Hadamard equivalence [7] given by∑

x∈F2n

(−1)Tr(λx)+wk(x) =
∑

x∈F2n

(−1)Tr(λd−1
x)+Tr(x2k+1) = H2k+1(λ

d−1
) (3)

which is also 3-valued.

Hyperoval Sequences: For odd n, consider a set

Mk = {x+ xk|x ∈ F2n}

where k is given as follows [12].

i) Singer type: k = 2, Segre type: k = 6.
ii) Glynn type I: k = 2σ + 2τ where σ = n+1

2 and 4τ ≡ 1 (mod n).
iii) Glynn type II: k = 3 · 2σ + 4 with σ = n+1

2 .

Then, a characteristic sequence of Mk given by

ai =
{

0, if αi ∈Mk

1, if αi 
∈Mk

has an ideal two-level autocorrelation, where the sequence is called the hyper-
oval sequence. In this paper, we are only interested in the Glynn type I and II
hyperoval sequences because the Singer and Segre type hyperoval sequences are
identical to m-sequences and the KPF sequences for k = 2, respectively [3].

Let hk(x) be a trace representation of the hyperoval sequence. For odd n,
Dillon derived a Hadamard equivalence of the hyperoval sequence [4], i.e.,∑

x∈F2n

(−1)Tr(λx)+hk(x) =
∑

x∈F2n

(−1)Tr(λ
k−1

k x)+Tr(xk) = Hk(λ
k−1

k ). (4)

If k is the Glynn type I exponent in ii), then (4) is 3-valued because k is quadratic.
If k is the Glynn type II exponent in iii), on the other hand, then (4) is con-
jectured to be at most 5-valued because k = 3 · 2 n+1

2 + 4 ≡ 2
n−1

2 + 2
n−3

2 + 1
(mod 2n − 1) is equivalently the inverse of the exponent of Conjecture 4-6 (1)
in [13] where Hk−1 (λ) is conjectured to be at most 5-valued. We will restate this
in Conjecture 2 of this paper.

3 Some Observations of Crosscorrelation of Binary
m-Sequences

In this section, we recall at most 5-valued crosscorrelation of a binarym-sequence
and its d-decimation, i.e., Hd(λ) =

∑
x∈F2n

(−1)Tr(λx)+Tr(xd). In terms of 3-
valued Hd(λ), many exponents d are known, i.e., Gold [6], Kasami [11], Welch,
Niho [13] exponents, and their respective inverses. In terms of 5-valued Hd(λ),
on the other hand, we need to clarify known results.
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Proposition 1. Let n be odd, t be a positive integer of 1 ≤ t ≤ n−1
2 , and

e = gcd(n, t) with n/e ≥ 4. Let d(k, l) = (1 + 2k)/(1 + 2l) with positive integers
k and l (k 
= l). Then, Hd(k,l)(λ) belongs to {0,±2(n+e)/2,±2(n+3e)/2} if a pair
(k, l) is one of following three cases

(a) (k, l) = (5t, t), (b) (k, l) = (5t, 3t), (c) (k, l) = (2t, t)

where the multiplication is computed modulo n. If e = 1, in particular, Hd(k,l)(λ)
is at most 5-valued, i.e., {0,±2(n+1)/2,±2(n+3)/2}.

Proposition 1-(a) has been proven by Niho (Lemma 4-1 in [13]). Although he
had never stated Proposition 1-(b) and (c) in [13], we believe those have been
implicitly known to many coding and sequence experts. In literatures, however,
we could not find an explicit proof for (b) and (c) which is not trivial. So, we
present it in this section because the result is linked to crosscorrelation of some
other binary two-level autocorrelation sequences in Section 4. In order to prove
Proposition 1, we need to use the Kasami’s Theorem on weight distribution of
subcodes of the second order Reed-Muller codes, which was partly used by Niho
to prove Proposition 1-(a). In the following, we consider the odd case of his
original theorem in [11].

Fact 1 (Kasami [11]). For odd n, let t and u be positive integers with 1 ≤ t ≤
n−1

2 and 1 ≤ u ≤ � n
2e	+ 1 where e = gcd(n, t). Let At(u) be a binary cyclic code

of length 2n−1 whose generator polynomial is given by ga(x) =
∏u−1

i=0 m1+2ti(x)
where mi(x) is a minimal polynomial of αi and α is a primitive element of F2n.
Similarly, let Ft(u) be a binary cyclic code of length 2n − 1 whose generator
polynomial is given by gf (x) =

∏u−1
i=0 m1+2t(2i+1)(x). Dual codes of At(u) and

Ft(u) are denoted by At(u)⊥ and Ft(u)⊥, respectively. Then, At(u)⊥ and Ft(u)⊥

have the same weight distribution as those of Ae(u)⊥ whose distinct weights are
given by

{0, 2n−1, 2n−1 ± 2(n−e)/2+ie−1} for 1 ≤ i ≤ u− 1.

Using Fact 1, we can prove Proposition 1.

Proof of Proposition 1. In (a) and (b), Hd(k,l)(λ) is represented by

Hd(k,l)(λ) =
∑

x∈F2n

(−1)Tr(λx+x
1+2k

1+2l ) =

{∑
x∈F2n

(−1)Tr(λx1+2t
+x1+25t

) for (a)∑
x∈F2n

(−1)Tr(λx1+23t
+x1+25t

) for (b).

Then, we can consider codes R5 and R5/3 given by

R5 = {Tr(αx1+2t

+ βx1+25t

)|α, β ∈ F2n},
R5/3 = {Tr(γx1+23t

+ δx1+25t

)|γ, δ ∈ F2n}

which are subcodes of the dual of Ft(u) for u = 3 where Ft(u) has zeros 1 +
2t(2i+1), i = 0, 1, 2. For any t of 1 ≤ t ≤ n−1

2 , therefore, weight distributions of
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R5 and R5/3 are immediate from Fact 1, and consequently Hd(k,l)(λ) belongs to
{0,±2

n+e
2 ,±2

n+3e
2 } for both (a) and (b).

In (c), on the other hand, At(3) generated by ga(x) has zeros {2, 1+2t, 1+22t},
so a code R2 given by

R2 = {Tr(ζx1+2t

+ ηx1+22t

)|ζ, η ∈ F2n}

is also a subcode of the dual of At(3). From Fact 1, therefore, it is clear that

Hd(k,l)(λ) =
∑

x∈F2n
(−1)Tr(λx1+2t

+x1+22t
) belongs to {0,±2

n+e
2 ,±2

n+3e
2 }. ��

Lemma 1. For odd n, let k and l be positive integers of 1 ≤ k, l ≤ n−1
2 (k 
= l),

and d(k, l) = 1+2k

1+2l . Then, Hd(n−k,l)(λ), Hd(k,n−l)(λ), and Hd(n−k,n−l)(λ) have
the same correlation spectrum as Hd(k,l)(λ). Furthermore, Hd(l,k)(λ) also belongs
to the same correlation spectrum as Hd(k,l)(λ).

Proof. Note that Hd·2j(λ) = Hd(λ) for any integer j [9]. Since 2n−k · (1 + 2k) =
2n−k + 2n ≡ 2n−k + 1 (mod 2n − 1), we see that 1 + 2k and 1 + 2n−k belong
to the same cyclotomic coset. Hence, d(k, l) belongs to the same cyclotomic
coset as d(n− k, l). Therefore, Hd(k,l)(λ) and Hd(n−k,l)(λ) have the same corre-
lation distribution. By the similar way, cases of Hd(k,n−l)(λ) and Hd(n−k,n−l)(λ)
are simply proved. From d(l, k) = d(k, l)−1, furthermore, it is immediate that
Hd(k,l)(λ) and Hd(l,k)(λ) belong to the same correlation spectrum. ��

Table 1 shows (k, l) pairs and d(k, l) = 1+2k

1+2l corresponding to 5-valuedHd(k,l)(λ)
in computer experiments. We only list pairs of 1 ≤ l < k ≤ n−1

2 which are enough
to cover the other possible pairs from Lemma 1. Each pair of ‘*’ is due to (a), ‘+’
due to (b), and ‘o’ due to (c) in Proposition 1, respectively. For odd n = 9 − 17,
Proposition 1 is verified from the experiments.

4 Crosscorrelation of a Pair of Binary Two-Level
Autocorrelation Sequences

4.1 A Pair of KPF Sequences

In [10], Hertel investigated crosscorrelation of two distinct KPF sequences for
odd n. (She called the sequences as Dillon-Dobbertin (DD) sequences after their
discoverers’ name.)

Fact 2 (Hertel [10]). For odd n, let k and l be distinct positive integers with
gcd(n, k) = gcd(n, l) = 1. Let bk(x) and bl(x) be trace representations of two
distinct KPF sequences, respectively. Then,

Cbk,bl
(λ) =

∑
x∈F2n

(−1)bk(λx)+bl(x) = Hd(k,l)(λ
1

1+2k ), λ ∈ F2n

where d(k, l) = 1+2k

1+2l . If (k, l) = (3t, t), in particular, Cbk,bl
(λ) is 3-valued, i.e.,

{0,±2
n+1
2 }.
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Table 1. (k, l) pairs and d(k, l)’s for 5-valued crosscorrelation of Tr(x) and Tr(xd(k,l))

n (k, l) d(k, l) n (k, l) d(k, l) n (k, l) d(k, l) n (k, l) d(k, l)

9 (2, 1)∗,o 43 13 (4, 2)+,o 1645 15 (7, 4)o 2895 17 (4, 3)∗ 14571

9 (4, 1)∗,o 11 13 (5, 3)+,o 1367 15 (6, 5)+ 1119 17 (5, 3)+ 21847

9 (4, 2)∗,o 109 13 (6, 3)+,o 939 15 (7, 5)∗ 3229 17 (6, 3)o 14679

11 (2, 1)∗,+,o 171 13 (5, 4)+,o 1461 17 (2, 1)o 10923 17 (7, 3)o 15019

11 (5, 1)∗,+,o 11 13 (6, 4)∗ 497 17 (4, 1)+ 2731 17 (6, 4)∗ 11567

11 (4, 2)∗,+,o 423 15 (2, 1)o 2731 17 (5, 1)∗ 11 17 (8, 4)o 7831

11 (4, 3)∗,+,o 235 15 (5, 1)∗ 11 17 (7, 1)∗ 43 17 (6, 5)o 12909

11 (5, 3)∗,+,o 343 15 (7, 1)o 43 17 (8, 1)o 171 17 (7, 5)o 13917

13 (2, 1)+,o 683 15 (4, 2)o 6567 17 (3, 2)∗ 3277 17 (8, 5)∗ 4003

13 (5, 1)∗ 11 15 (5, 2)∗ 205 17 (4, 2)o 26221 17 (7, 6)+ 10587

13 (6, 1)+,o 43 15 (5, 3)+ 5463 17 (7, 2)∗ 205 17 (8, 6)∗ 2143

13 (3, 2)∗ 205 15 (5, 4)∗ 1943 17 (8, 2)+ 26317

Corollary 1. With the notation of Proposition 1 and Fact 2, if a pair (k, l)
is one of the pairs in Proposition 1, then Cbk,bl

(λ) is at most 5-valued, i.e.,
{0,±2

n+1
2 ,±2

n+3
2 }.

Proof. Corollary 1 is immediate from combining Proposition 1 and Fact 2. ��

From Corollary 1, it is obvious that crosscorrelation of bk(x) and bl(x) with a
(k, l) pair in Table 1 is 5-valued.

4.2 5-Term KPF Sequences and Welch-Gong (WG) Sequences

The WG sequences are obtained from the Welch-Gong transformation of KPF se-
quences for k = n±1

3 , where theKPFsequences always have five trace terms [3] [15].
By the Parseval’s equation exploited in [10], we derive a theorem on crosscorrela-
tion of the 5-term KPF and the WG sequences.

Theorem 1. Let n be odd and n = 3k±1. Let bk(x) and wk(x) be trace represen-
tations of the KPF sequences and the WG sequences, respectively. For s = 1

2k+1 ,
crosscorrelation of the two sequences given by

C
bk,w

(s)
k

(λ) =
∑

x∈F2n

(−1)bk(λx)+wk(xs) = H 2k+1
3

(λ)

is 3-valued, i.e., {0,±2
n+1
2 }.
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Proof. Applying the Parseval’s equation in (1),

C
bk,w

(s)
k

(λ) =
1
2n

∑
x∈F2n

∑
y∈F2n

(−1)bk(λy)+Tr(xy
1

2k+1 )
∑

z∈F2n

(−1)wk(zs)+Tr(xz
1

2k+1 )

=
1

22n

∑
x,z∈F2n

∑
y∈F2n

(−1)bk(y)+Tr(xλ
− 1

2k+1 y
1

2k+1 )

·
∑

u∈F2n

(−1)wk(us)+Tr(zus)
∑

v∈F2n

(−1)Tr(xv
1

2k+1 )+Tr(zvs).

(5)

If s = 1
2k+1

, then we have

∑
v∈F2n

(−1)Tr(xv
1

2k+1 )+Tr(zvs) =
∑

v∈F2n

(−1)Tr((x+z)v
1

2k+1 ) =
{

2n, if x = z
0, if x 
= z.

If the Hadamard equivalences (2) and (3) are applied to (5), then we have

C
bk,w

(s)
k

(λ) =
1
2n

∑
x∈F2n

∑
y∈F2n

(−1)Tr(λ− 1
3 x

2k+1
3 y)+Tr(y3)

∑
u∈F2n

(−1)Tr(xbu)+Tr(ua)

=
1
2n

∑
y∈F2n

∑
u∈F2n

(−1)Tr(y3)+Tr(ua)
∑

x∈F2n

(−1)Tr(λ− 1
3 x

2k+1
3 y)+Tr(uxb)

where a = 2k + 1 and b = (22k − 2k + 1)−1. From 3k = n ± 1, it is clear that
b−1 · 2k+1

3 = 23k+1
3 ≡ 1 (mod 2n − 1). Thus, we have b ≡ 2k+1

3 (mod 2n − 1).
Consequently,

C
bk,w

(s)
k

(λ) =
1
2n

∑
y∈F2n

∑
u∈F2n

(−1)Tr(y3)+Tr(ua)
∑

x∈F2n

(−1)Tr((λ− 1
3 y+u)x

2k+1
3 )

=
∑

u∈F2n

(−1)Tr(λu3+ua) =
∑

u∈F2n

(−1)Tr(λu)+Tr(u
2k+1

3 ) = H 2k+1
3

(λ)

(6)

where y = λ
1
3u. In (6), 2k+1

3 ≡ b = (22k − 2k + 1)−1. Since it is an inverse of the
Kasami exponent with gcd(n, k) = 1, we see that H 2k+1

3
(λ) is 3-valued and so is

C
bk,w

(s)
k

(λ). ��

4.3 m-Sequences and Welch-Gong (WG) Sequences

In an effort to search for new two-level autocorrelation sequences, Gong and
Golomb proposed the decimation-Hadamard transform (DHT) in [7]. With re-
spect to orthogonal functions f(x) and h(x), they defined a realizable pair (v, t)
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of g(x) in the DHT by generalizing the Hadamard equivalence developed in [3],
i.e., ∑

x∈F2n

(−1)h(λtx)+f(xv) =
∑

x∈F2n

(−1)h(λx)+g(x). (7)

They also showed that there exist at most 6 realizable pairs for the realization.
Among them, we will use the fact that if (v, t) is a realizable pair of g(x), then
(t,−(vt)−1) is also a realizable pair of g(x(vt)−1

) [7] from which we have∑
x∈F2n

(−1)h(λ−(vt)−1
x)+f(xt) =

∑
x∈F2n

(−1)h(λx)+g(x(vt)−1
). (8)

Using this, we establish a theorem on crosscorrelation of m-sequences and WG
sequences.

Theorem 2. Let n be odd and n = 3k ± 1, and d = 22k − 2k + 1. Let wk(x) be
a trace representation of the WG sequences. For s = d

2k+1
, crosscorrelation of

m-sequences and the WG sequences given by

C
Tr,w

(s)
k

(λ) =
∑

x∈F2n

(−1)Tr(λx)+wk(xs) = Hd−1(λ−s)

is 3-valued, i.e., {0,±2
n+1
2 }.

Proof. From the Hadamard equivalence of (3), we have a realizable pair (v, t) =
(2k + 1, d−1) in (7) where f(x) = h(x) = Tr(x) and g(x) = wk(x). From (8),
therefore, we have∑

x∈F2n

(−1)Tr(λ
− d

2k+1 x)+Tr(xd−1
) =

∑
x∈F2n

(−1)Tr(λx)+wk(x
d

2k+1 ).

Thus, C
Tr,w

(s)
k

(λ) = Hd−1(λ−s) for s = d
2k+1

. Since d is the Kasami exponent

with gcd(n, k) = 1, Hd−1(λ−s) is 3-valued and so is C
Tr,w

(s)
k

(λ). ��

4.4 m-Sequences and Hyperoval Sequences

Applying (8) to hyperoval sequences with the Hadamard equivalence of (4), we
can derive another Hadamard equivalence, i.e.,∑

x∈F2n

(−1)Tr(λx)+hk(x
1

k−1 ) =
∑

x∈F2n

(−1)Tr(λ
− 1

k−1 x)+Tr(x
k−1

k ) = H k−1
k

(λ−
1

k−1 ).

(9)
From (9), we consider a theorem for the Glynn type II hyperoval sequences.
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Theorem 3. Let n be odd and k = 3 ·2σ+4 where σ = n+1
2 . Let hk(x) be a trace

representation of the Glynn type II hyperoval sequences. For s = 1
k−1 , crosscor-

relation of m-sequences and the Glynn type II hyperoval sequences given by

C
Tr,h

(s)
k

(λ) =
∑

x∈F2n

(−1)Tr(λx)+hk(xs) = H k−1
k

(λ−s) (10)

is at most 5-valued, i.e., {0,±2
n+1
2 ,±2

n+3
2 }.

Proof. From (9), C
Tr,h

(s)
k

(λ) is determined by a decimation factor k−1
k of a trace

function. Note that the cyclotomic coset that k−1
k belongs to does not change

by multiplying its numerator and denominator by 2
n−1

2 and 2
n−3

2 , respectively.
Then,

k − 1
k
≡ 2

n−1
2

2
n−3

2

· (k − 1)
k

=
2

n−1
2

2
n−3

2

· 3 · (1 + 2
n+1
2 )

(2
n+3
2 + 2

n+1
2 + 4)

≡ 3 · (1 + 2
n−1

2 )

(1 + 2
n−1

2 )2

=
1 + 2

1 + 2
n−1

2

(mod 2n − 1).

Hence, k−1
k ≡ 1+2μ

1+2ν = d(μ, ν) in Proposition 1 where μ = 1 and ν = n−1
2 . Since

2ν = n− μ, we have (n − μ, ν) = (2t, t) with t = n−1
2 , a pair of Proposition 1-

(c). From e = gcd(n, t) = gcd(n, n−1
2 ) = 1, we see that Hd(n−μ,ν)(λ) is at most

5-valued and so is Hd(μ,ν)(λ) from Lemma 1. ��

In terms of the Glynn type I hyperoval sequences, on the other hand, k = 2σ +2τ

where σ = n+1
2 and τ = n+1

4 or τ = 3n+1
4 such that 4τ ≡ 1 (mod n). Using

the similar approach to the proof of Theorem 3, we can establish the following
equivalence of k−1

k .

k − 1
k
≡
{

2
n−1

2 − 2
n+1
4 + 1, if τ = n+1

4

2
n+1
2 − 2

n+3
4 + 1, if τ = 3n+1

4 .
(11)

In (11), we see that k−1
k is equivalent to the decimation factor r in Conjecture 4-6

(3) and (4) of [13], where Hr(λ) is conjectured to be at most 5-valued. Together
with our experimental results, we establish the following conjecture.

Conjecture 1. Let n be odd and k = 2σ+2τ where σ = n+1
2 and 4τ ≡ 1 (mod n).

Let hk(x) be a trace representation of the Glynn type I hyperoval sequences. For
s = 1

k−1 , crosscorrelation of m-sequences and the Glynn type I hyperoval se-

quences given by C
Tr,h

(s)
k

(λ) in (10) is at most 5-valued, i.e., {0,±2
n+1
2 ,±2

n+3
2 }.

With respect to crosscorrelation of m-sequences and the Glynn type II hyperoval
sequences, we also observed another exponent corresponding to at most 5-valued
crosscorrelation. Together with (4) which is conjectured to be at most 5-valued
for the Glynn type II hyperoval sequences, we establish Conjecture 2.
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Conjecture 2. For odd n, let hk(x) be a trace representation of the Glynn type
II hyperoval sequences. For s = 1 or 1

3 , crosscorrelation of m-sequences and the
Glynn type II hyperoval sequences given by C

Tr,h
(s)
k

(λ) is at most 5-valued, i.e.,

{0,±2
n+1
2 ,±2

n+3
2 }.

Conjectures 1 and 2 have been verified for odd n = 9 − 19 through computer
experiments.

4.5 m-Sequences and 3-Term KPF Sequences

In [3], the 3-term KPF sequences are represented by

bk(x) = Tr(x+ x2k+1 + x2k−1), k =
n+ 1

2
where n is odd. On the other hand, T3 sequences, or 3-term sequences with ideal
two-level autocorrelation which had been conjectured in [15] are represented by

T3(x) = Tr(x+ xr + xr2
), r = 2

n−1
2 + 1.

With the equivalence under modulo 2n − 1, we see that the T3 sequences are
decimation of the 3-term KPF sequences, i.e., T3(x) = bk(x2k+1) where k = n+1

2 .
Using this relation, we establish the following theorem.

Theorem 4. Let n be odd and k = n+1
2 . Let bk(x) be a trace representation of

the 3-term KPF sequences. For s = 2k − 1, crosscorrelation of m-sequences and
the 3-term KPF sequences given by

C
Tr,b

(s)
k

(λ) =
∑

x∈F2n

(−1)Tr(λx)+bk(xs)

is at most 5-valued, i.e., {0,±2
n+1
2 ,±2

n+3
2 }.

Proof. In [2], Chang et al. showed that a binary cyclic code represented by

T = {Tr(ax+ bxr + cxr2
)|a, b, c ∈ F2n , r = 2

n−1
2 + 1}

is a dual of a triple error correcting cyclic code and has five nonzero distinct
weights. Then, crosscorrelation of m-sequences and the T3 sequences given by
CTr,T3(λ) =

∑
x∈F2n

(−1)Tr(λx)+T3(x) is at most 5-valued - in fact, 3-valued -
because the exponent in the summation is a codeword of T . In the following,
we can consider another at most 5-valued crosscorrelation CTr(r2),T3

(λ) where

the exponent is also a codeword of T . Note that 2
n+1
2 · r = 2n + 2

n+1
2 ≡ 1 + 2k

(mod 2n − 1), and thus r ≡ 2k + 1. Therefore, T3(x) = bk(xr) where k = n+1
2 .

Then,

CTr(r2),T3
(λ) =

∑
x∈F2n

(−1)Tr(λr2
xr2

)+T3(x) =
∑

x∈F2n

(−1)Tr(λr2
x)+T3(xr−2

)

=
∑

x∈F2n

(−1)Tr(λr2
x)+bk(xr−1

) = C
Tr,b

(s)
k

(λr2
)
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s : Some conjectured exponents by Niho

KPF sequences

WG sequences

m-sequences

Hyperoval sequences

f(x)

wk(x)

g(x)

s = 1, 22k−2k+1
2k+1

∗
,

k = n±1
3

Glynn I

(k, l) = (5t, t), (5t, 3t), (2t, t)

s = 2k + 1

(Conjecture 1)

k = 2σ + 2τ

s = 1
k−1

∗
,

: 3-valued C
f,g(s) (λ)

and their respective inverses
s: Gold, Kasami, Welch, Niho,

(k, l) = (3t, t)
s = 1,

k = n+1
2

s = 2k − 1∗,

s = 1
2k+1

∗
,

k = n±1
3

: At most 5-valued C
f,g(s) (λ)s

s

(2t, t)

g(x)f(x)

(k, l) = (5t, t), (5t, 3t),

Glynn II

s = 1+2k

1+2l
,

s = 1∗,

bk(x)bl(x)

s = 1
k−1

∗, k = 3 · 2σ + 4

s = 1∗, 1
3
∗ (Conjecture 2)

s = 1

hk(x)hk(x)

T r(x)

Fig. 1. Relations of binary two-level autocorrelation sequences with respect to 3- or
5-valued crosscorrelation (gcd(n, t) = 1, σ = n+1

2
, and 4τ ≡ 1 (mod n)). The crosscor-

relations corresponding to the exponents s with ‘∗’ are proved or conjectured in this
paper.

where s = r−1 = (2k +1)−1 ≡ 2k−1 (mod 2n−1). Hence, C
Tr,b

(s)
k

(λ) is at most
5-valued. ��

5 Conclusion and Discussion

In this paper, we have studied 3- or 5-valued crosscorrelation of a pair of binary
two-level autocorrelation sequences given by

Cf,g(s)(λ) =
∑

x∈F2n

(−1)f(λx)+g(xs)

where n is odd, and f(x) and g(x) are trace representations of the pair, excluding
GMW, QR, and Hall’s sextic residue sequences.

If f(x) = g(x) = Tr(x), all known exponents s’s of 3- or 5-valued Cf,g(s)(λ)
are (a) Gold, Kasami, Welch, Niho exponents, and their respective inverses; (b)
the exponents of Proposition 1; (c) the other exponents conjectured by Niho [13]
and their inverses. Otherwise, all known exponents s’s of 3- or 5-valued Cf,g(s)(λ)
for the corresponding f(x) and g(x) are (a) s = 2k + 1 from (2), or s = 1 from
(3) and (4); (b) s’s from Fact 2 and Theorems 1 - 4; (c) s’s from Conjectures
1 and 2. With the classification, we can summarize relations of binary two-
level autocorrelation sequences with respect to 3- or 5-valued crosscorrelation by
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Fig. 1, where a solid line is for exactly 3-valued crosscorrelation and a dotted
line for at most 5-valued crosscorrelation. (For small n, it may be 3-valued in
some cases.) In Fig. 1, the crosscorrelations corresponding to the exponents s
with ‘∗’ are proved or conjectured in this paper.

From the observation of our experiments for n = 13, 15, 17, and 19, it is
interesting that the exponents and relations in Fig. 1 completely describe all 3-
or 5-valued crosscorrelations of binary two-level autocorrelation sequences unless
both are m-sequences.
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Abstract. Binary sequences with good autocorrelation properties are
widely used in cryptography. If the autocorrelation properties are op-
timum, then the sequences are called perfect. All recently discovered
perfect sequences of period n = 2k − 1 are Hadamard equivalent, when
k is odd. In this paper we generalise this concept to sequences of period
n = 4m−1, where m is not necessarily a power of 2. Using this notion we
show, that the Hall and the Legendre sequences are extended Hadamard
equivalent.

Keywords: Binary sequence, Perfect sequence, Autocorrelation, Cross-
correlation, Hadamard equivalence.

1 Introduction and Definitions

New classes of perfect sequences of period n = 2k − 1 have been found in [2]
by Dillon and Dobbertin. For this spectacular result, a new type of ”equiva-
lence of functions” has been defined: The powerful tool in [2] is the Hadamard
equivalence. The basic is that Hadamard equivalent sequences have the same au-
tocorrelation spectra. This concept has been generalised by Gong and Golomb
in [3]. Based on this equivalence, a method is given to construct new perfect
sequences of period n = 2k − 1, see [3]. Unfortunately, no new perfect sequences
have been found for k ≤ 17. We will extend the concept of Hadamard equivalence
to sequences of period n = 4m− 1.

In the first section we give some basic definitions. In the second section we
generalise the Hadamard equivalence to sequences of period n = 4m − 1: We
will call it extended Hadamard equivalence. It turns out that extended
Hadamard equivalent sequences have the same autocorrelation spectra. In the
case n = 4m − 1 and m is not a power of 2, three construction for perfect
sequences are known: the Legendre (n ≡ 3 mod 4 prime), the Hall (n = 4t2 + 27
prime) and the twin prime (n = p(p+ 2), p prime) sequences. In the last section
we show, that the Legendre and the Hall sequences of the same period are
equivalent under our new notion.

We consider binary sequences a := (ai)i≥0 of period n, i.e. ai+n = ai for all
i ≥ 0. We define the autocorrelation (AC) of a n-periodic sequence a by

ct(a) =
n−1∑
i=0

(−1)ai+ai+t

G. Gong et al. (Eds.): SETA 2006, LNCS 4086, pp. 119–128, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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for all t = 0, ..., n − 1. We consider the indices modulo n. The set of all AC-
coefficients are called AC-spectrum. We define the binary complement a =
(ai)i≥0 of a sequence a by ai := ai + 1, the shift a[t] = (a[t]

i )i≥0 by a
[t]
i := ai+t

and the decimation a(d) = (a(d))i≥0 with gcd(d, n) = 1 by a
(d)
i := aid. Note

the autocorrelation is invariant under this three transformations. We call two
sequences a and b equivalent, if a can be formed into b by this transformations.

Binary sequences with low AC-coefficients are important in cryptography.
The most known examples for sequences with small AC-coefficient have period
n ≡ 3 mod 4. We call a sequence a perfect, if the AC-function takes just the
two values

ct(a) =
{
−1 if t 
≡ 0 mod n
n otherwise.

A sequence is balanced, if the number of 1’s and 0’s in one period differs only
by one. We have for perfect sequences( n−1∑

i=0

(−1)ai

)2

=
n−1∑
t=0

n−1∑
i=0

(−1)ai+ai+t = (−1)(n− 1) + n = 1.

Thus, perfect sequences are always balanced. We assume without loss of gener-
ality, that perfect sequences have n+1

2 entries 1 and n−1
2 entries 0 in one period,

thus

n−1∑
i=0

(−1)ai = −1, (1)

otherwise we consider the binary complement.
We define the crosscorrelation (CC) between two sequences a := (ai)i≥0

and b := (bi)i≥0 by

ct(a, b) =
n−1∑
i=0

(−1)ai+bi+t

for all t = 0, ..., n− 1.
In the next section we will use the crosscorrelation to develop a method to

construct sequences with specified AC-properties. This method can also be used
to prove that certain sequences are perfect. The basic idea is a generalisation
of the Hadamard equivalence introduced in [2]. Hadamard equivalence has been
used for sequences of period n = 2m − 1: One can show that certain sequences
of period n = 2m − 1 are perfect. The specific feature of sequences with period
n = 2m−1 is that they can be identified with Boolean functions over finite fields
of characteristic 2.

We will outline the concept of Hadamard equivalence: We denote the finite
field with 2m elements by F2m . The reader is referred to [5] for more information
on the theory of finite fields. Let α be a primitive element in F2m and let a be
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a binary sequence of period n = 2m − 1. Then we can identify a with a Boolean
function f : F2m → F2 by

f(αi) := ai (2)

and the value f(0) is irrelevant. If a is balanced, then we choose f(0) ∈ {0, 1}
such that

∑
x∈F2m

(−1)f(x) = 0. We call a Boolean function f : F2m → F2

perfect, if the corresponding function defined by (2) is perfect. Note, for perfect
functions we have ∑

x∈F2m

(−1)f(x)+f(yx) =
{

2m if y = 1
0 otherwise.

This orthogonality property will be important for the concept of Hadamard
equivalence: Let f, g, h1, h2 : F2m → F2 be Boolean functions and d be an integer
such that ∑

x∈F2m

(−1)f(x)+h1(y
dx) =

∑
x∈F2m

(−1)g(x)+h2(yx) (3)

holds for all y ∈ F2m . Then

– [1,2]: If h1 = h2 is the trace function, then the functions f and g are
Hadamard equivalent. In particularly, if f is perfect, then g is perfect,
too. Hadamard equivalence is a powerful tool to prove that functions are
perfect. The main idea in the proofs given in [1,2] is, that the functions are
Hadamard equivalent.

– [3]: If h1 = h2 is an arbitrary perfect function, then the functions f and g
have the same autocorrelation spectra. In particularly, if f is perfect, then g
is perfect, too. Using this slight generalisation of Hadamard equivalence, an
algorithm for constructing perfect functions is developed. Unfortunately, no
new perfect functions have been found for m ≤ 17.

In the following we will generalise the concept of Hadamard equivalence to
sequences of period n = 4m−1, where h1 and h2 are arbitrary perfect sequences.

2 Extended Hadamard Equivalence

We generalise the idea of Hadamard equivalence to sequences of period n =
4m − 1. We will call this extended Hadamard equivalence. Based on this new
equivalence we will give in this section an algorithm to construct perfect se-
quences of period n = 4m− 1.

We define the modified autocorrelation and crosscorrelation for two binary
sequences a and b of period n = 4m− 1 by

c∗t (a) := ct(a) + 1 and c∗t (a, b) := ct(a, b) + 1
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for all t = 0, ..., n−1. Note, two sequences have the same AC- resp. CC-function
if and only if they have the same modified AC- resp. CC-function. For perfect
sequences we get the orthogonality property

c∗t (a) =
{

0 if t 
≡ 0 mod n
n+ 1 if t ≡ 0 mod n.

We also define

w∗(a) :=
n−1∑
i=0

(−1)ai + 1.

If a is perfect, using (1) we get w∗(a) = 0. The next two propositions are well-
known for sequences over finite fields (Inverse and Parseval formula).

Proposition 1. Let a = (ai)i≥0 and d = (di)i≥0 be binary sequences of period
n = 4m− 1 and d be perfect. Then

(−1)at =
1

n+ 1

( n−1∑
k=0

c∗k(a, d)(−1)dk+t + w∗(a)
)
. (4)

Proposition 1 shows, that we can reconstruct the sequence a, if we know d and
the CC-coefficients c∗t (a, d), t = 0, ..., n − 1, since we compute w∗(a) from the
CC-coefficients by

n−1∑
k=0

c∗k(a, d) =
n−1∑
k=0

( n−1∑
i=0

(−1)ai+di+k + 1
)

=
n−1∑
i=0

(−1)ai

n−1∑
k=0

(−1)di+k + n

= −w∗(a) + 1 + n.

(5)

Proof. We simply transform the right side of equation (4) and we get

n−1∑
k=0

c∗k(a, d)(−1)dk+t =
n−1∑
k=0

(ck(a, d) + 1)(−1)dk+t

=
n−1∑
k=0

n−1∑
i=0

(−1)ai+di+k+dk+t +
n−1∑
k=0

(−1)dk+t︸ ︷︷ ︸
=−1

=
n−1∑
i=0

(−1)ai

( n−1∑
k=0

(−1)di+k+dk+t + 1︸ ︷︷ ︸
=c∗t−i(b)

)
−

n−1∑
j=0

(−1)aj − 1

= (n+ 1) · (−1)at − w∗(a),

since d is perfect.
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Proposition 2. Let a, b and d be binary sequences of period n = 4m− 1 and d
be perfect. Then

c∗t (a, b) =
1

n+ 1

( n−1∑
k=0

c∗k(a, d)c∗k−t(b, d) + w∗(a)w∗(b)
)
. (6)

Proof. Let a = (ai)i≥0, b = (bi)i≥0 and d = (di)i≥0. We expand

n−1∑
k=0

c∗k(a, d)c∗k−t(b, d)

=
n−1∑
k=0

( n−1∑
i=0

(−1)ai+di+k + 1
)
·
( n−1∑

j=0

(−1)bj+dj+k−t + 1
)

=
n−1∑
i=0

n−1∑
j=0

(−1)ai+bj

n−1∑
k=0

(−1)di+k+dj+k−t

+
n−1∑
i=0

(−1)ai

n−1∑
k=0

(−1)di+k︸ ︷︷ ︸
=−1

+
n−1∑
j=0

(−1)bj

n−1∑
k=0

(−1)dj+k−t︸ ︷︷ ︸
=−1

+n

=
n−1∑
i=0

n−1∑
j=0

(−1)ai+bj

( n−1∑
k=0

(−1)di+k+dj+k−t + 1︸ ︷︷ ︸
=c∗j−t−i(d)

)
+ n+ 1

−
( n−1∑

i=0

n−1∑
j=0

(−1)ai+bj +
n−1∑
i=0

(−1)ai +
n−1∑
j=0

(−1)bj + 1
)
,

where we insert 0 =
∑n−1

i,j=0(−1)ai+bj + 1 − (
∑n−1

i,j=0(−1)ai+bj + 1). Since d is
perfect we get

n−1∑
k=0

c∗k(a, d)c∗k−t(b, d)

= (n+ 1)
( n−1∑

i=0

(−1)ai+bi+t + 1
)
−
( n−1∑

i=0

(−1)ai + 1
)( n−1∑

j=0

(−1)bj + 1
)

= (n+ 1)c∗t (a, b)− w∗(a)w∗(b).

We call two binary sequences a and b of period n = 4m−1 extended Hadamard
equivalent (EH-equivalent), if there exist two perfect sequences d and e and
integers s, t with gcd(s, n) = 1 such that

ck(a, d) = csk+t(b, e) (resp. c∗k(a, d) = c∗sk+t(b, e)) (7)

holds for all k. Using (5) for EH-equivalent sequences a and b, then w∗(a) =
w∗(b).
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Proposition 3. Let a and b be binary sequences of period n = 4m− 1. If a and
b are EH-equivalent, then the AC-spectra of a and b are equal.

Proof. If a and b are EH-equivalent, then there exist two perfect sequences d and
e and integers s, t with gcd(s, n) = 1 such that (7) holds. Since c∗i (a) = c∗i (a, a)
we use formula (6) and get

(n+ 1)c∗i (a) =
n−1∑
k=0

c∗k(a, d)c∗k−i(a, d) + w∗(a)2

=
n−1∑
k=0

c∗sk+t(b, e)c
∗
s(k−i)+t(b, e) + w∗(b)2

=
n−1∑
k=0

c∗k(b, e)c∗k−si(b, e) + w∗(b)2

= (n+ 1)c∗si(b).

Let a = (ai)i≥0, d = (di)i≥0 and e = (ei)i≥0 be binary sequences of period n =
4m− 1 and let d and e be perfect. Let z1, z2, z3 be integers with gcd(zi, n) = 1,
i=1,2,3, such that( n−1∑

k=0

c∗k(a(z1), d(z2))(−1)e
(z3)
k+i + w∗(a(z1))

)
∈ {±(n+ 1)}. (8)

Then we call the binary sequence b = (bi)i≥0 defined by

(−1)bi =
1

n+ 1

( n−1∑
k=0

c∗k(a(z1), d(z2))(−1)e
(z3)
k+i + w∗(a(z1))

)
(9)

a realisation of a, d, e by the triple (z1, z2, z3).
Note, in the case d = e there exists always a realisation: the trivial realisation

with z2 = z3. Then it is b = a(z1).

Theorem 1. Let a, d and e be binary sequences of period n = 4m− 1 and let d
and e be perfect. Let z1, z2, z3 be integers with gcd(zi, n) = 1, i=1,2,3, such that
(8) holds. Then the binary sequence b = (bi)i≥0 defined by (9) and a have the
same AC-spectrum.

Note the sequence b is uniquely defined by the perfect sequence e(z3) and its
CC-coefficients c∗k(b, e(z3)) (:= c∗k(a(z1), d(z2))), see Proposition 1.

Proof. We show, the sequences a(z1) and b are EH-equivalent. Then a and b have
the same AC-spectrum, since a is equivalent to a(z1). We get

(n+ 1)ci(b, e(z3))

= (n+ 1)
n−1∑
j=0

(−1)bj+e
(z3)
j+i
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=
n−1∑
j=0

( n−1∑
k=0

c∗k(a(z1), d(z2))(−1)e
(z3)
k+j + w∗(a(z1))

)
(−1)e

(z3)
j+i

=
n−1∑
k=0

c∗k(a(z1), d(z2))
n−1∑
j=0

(−1)e
(z3)
k+j

+e
(z3)
j+i + w∗(a(z1))

n−1∑
j=0

(−1)e
(z3)
j+i︸ ︷︷ ︸

=−1

=
n−1∑
k=0

c∗k(a(z1), d(z2))
( n−1∑

j=0

(−1)e
(z3)
k+j +e

(z3)
j+i + 1︸ ︷︷ ︸

=c∗
i−k

(e(z3))

)
−

n−1∑
k=0

c∗k(a(z1), d(z2))− w∗(a(z1))

= (n+ 1)c∗i (a
(z1), d(z2))−

n−1∑
k=0

c∗k(a(z1), d(z2))− w∗(a(z1)),

since e is perfect. Since d perfect we get from (5) that (n + 1)ci(b, e(z3)) =
(n+ 1)c∗i (a

(z1), d(z2))− (n+ 1) = (n+ 1)ci(a(z1), d(z2)).

We have developed a method to construct sequences with specified autocorrela-
tion. Algorithm idea: Take three shift distinct perfect sequences and check for
all possible integers zi, i = 1, 2, 3, if there exists a realisation of these sequences.
The big handycap by this algorithm is, that we need three perfect sequences,
which are pairwise shift distinct.

If n = 4m−1 and m is not a power of 2, in this case we only have at least three
(known) shift distinct sequences if n = 4t2 + 27 prime: the Hall and Legendre
sequences. The algorithm gives by input Hall and Legendre sequences no new
perfect sequences for n = 4t2 + 27 with t ≤ 77. But we get an other interesting
result, which we present in the next section.

3 EH-Equivalence of Legendre and Hall Sequences

All known perfect sequences of period n = 4m− 1, where m is not a power of 2,
are defined by cyclotomic classes.

Let n be a prime, then Zn is a finite field with additive group Zn and multi-
plicative group Z∗

n = Zn\{0}. The multiplicative group is cyclic, thus Z∗
n = 〈z〉.

In the following we fix z as a primitive element in Zn.
Let D be a subset of Zn. We define the translate D + t by D + t := { i +

t mod n | i ∈ D} and the decimation sD by sD := { si mod n | i ∈ D}, where
gcd(s, n) = 1. We also define the corresponding sequence a of D by a := seq(D),
where ai = 0 if i ∈ D and ai := 1 otherwise.

Let n = ef + 1 be prime. We define the cyclotomic classes C(e)
i in Zn by

C
(e)
i := { zes+i mod n | s = 0, ..., f − 1}

for i = 0, ..., e − 1. Note, the sets C(e)
i are pairwise disjoint, and their union is

Z∗
n. Further C(e)

i+ne = C
(e)
i , thus we consider the indices modulo e. We define the

subsets

QR := C
(2)
0 and H := C

(6)
0 ∪C(6)

1 ∪ C(6)
3 . (10)
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The sequences sQR := seq(QR) are called Legendre sequences and the se-
quences sH := seq(H) are called Hall (sextic residue) sequences. The Leg-
endre sequence is perfect if n ≡ 3 mod 4, see [6], and the Hall sequence is perfect
if n = 4t2 + 27, see [4]. It is easy to see from the definition of QR and H , that
the sequences sQR and sH are not equivalent.

Theorem 2. The Hall sequences and the Legendre sequences are EH-equivalent.
More precisely, we have

czk(s(z)
H , sH) = ck(sQR, sH) (11)

for all k = 0, ..., n− 1.

In other words, the Legendre sequence is a realisation of the Hall sequences by
(z, z, 1).

Proof. Using the well known correspondence between sets and binary sequences
(as indicated above), it is easy to see that

czk(s(z)
H , sH) = −n+ 2 + 4|(H − zk) ∩ z−1H | and

ck(sQR, sH) = −n+ 2 + 4|(H − k) ∩QR| (12)

holds for all k = 0, ..., n− 1. We simply write Ci for C(6)
i . Note, z is the defining

primitive element of QR and H , thus

ziQR = Ci ∪ Ci+2 ∪ Ci+4 and zjH = Cj ∪Cj+1 ∪ Cj+3, (13)

where the indices are obtained modulo 6. For k = 0 we get c0(s
(z)
H , sH) = −n+

2 + 4|C0| = c0(sQR, sH). Let k 
= 0, then k = −z−i for some i, since z is a
primitive element in Zn. We get from (12), that (11) holds if and only if

|(H + z−i+1) ∩ z−1H | = |(H + z−i) ∩QR| (14)

holds for all i = 0, ..., n−1. It is (H+z−i+1)∩z−1H = z−i+1((zi−1H+1)∩zi−2H)
and (H + z−i) ∩QR = z−i((ziH + 1) ∩ ziQR). Thus, from (13) it follows that
(14) holds if and only if hi = qi for all i = 0, ..., 5, where

hi := |(zi−1H + 1) ∩ zi−2H | and qi := |(ziH + 1) ∩ ziQR|. (15)

We will explicitly calculate hi and qi. In general we have

((Ci1 ∪ Ci2 ∪ Ci3) + 1) ∩ (Cj1 ∪ Cj2 ∪Cj3 ) =
⋃̇

r = 1, 2, 3
s = 1, 2, 3

((Cir + 1) ∩ Cjs)

since Ci’s are pairwise disjoint. For fixed i and j we define the cyclotomic number
(i, j) to be the number of solutions of the equation zi + 1 = zj with zi ∈ Ci and
zj ∈ Cj , i.e.

(i, j) = |(Ci + 1) ∩ Cj |.
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We refer the readers to [8] for more informations about cyclotomic numbers.
We have

|((Ci1 ∪ Ci2 ∪Ci3 ) + 1) ∩ (Cj1 ∪ Cj2 ∪ Cj3 )| =
∑

r = 1, 2, 3
s = 1, 2, 3

(ir, js)

and therefore we get from (13)

hi =
∑

r = 0, 2, 5
s = 1, 4, 5

(i+ r, i+ s) and qi =
∑

r = 0, 1, 3
s = 0, 2, 4

(i+ r, i+ s).

We explicitly calculate the cyclotomic numbers for n = 4t2 + 27. If n = 4t2 + 27
is prime, then gcd(t, 3) = 1. We have n − 1 ≡ 0 mod 6 and n − 1 ≡ 6 mod 12,
since 2 and 3 divides n−1 and 4 is not a divider of n−1. Thus, n = 6f +1 with
f odd. In this case the 36 cyclotomic numbers (i, j) are given by

i \ j 0 1 2 3 4 5
0 A B C D E F
1 G H I E C I
2 H J G F I B
3 A G H A G H
4 G F I B H J
5 H I E C I G

where

9 · A := t2 − 4 · t′ + 4
9 ·B := t2 − t′ + 16
9 · C := t2 − t′ + 16
9 ·D := t2 + 8 · t′ + 7
9 · E := t2 − t′ − 2
9 · F := t2 − t′ − 2
9 ·G := t2 + 2 · t′ + 10
9 ·H := t2 + 2 · t′ + 1
9 · I := t2 − t′ + 7
9 · J := t2 − t′ + 7

and t′ = −t if t ≡ 1 mod 3 and t′ = t if t ≡ 2 mod 3. We get

q0=A+C+E+G+ I +C+A+H+G=t2+ 22
3

− 2t′
3

=B+E+F+J + I +B+ I + I +G=h0

q1=H+E+ I +J +F +B+F +B+J =t2+ 16
3
− 2t′

3
=A+C+F+G+ I + I +A+H+H=h1

q2=H+G+ I +A+H+G+H+E+ I =t2+ 13
3

+ t′
3

=G+H+E+H+J +F +G+F +B=h2

q3=B+D+F+G+A+H+F +B+J =t2+ 19
3

+ t′
3

=J +G+ I +G+H+G+ I +E+ I =h3

q4=G+ I +C+G+ I +H+H+E+ I =t2+ 19
3

+ t′
3

=C+D+F+H+A+H+ I +B+J =h4

q5=B+D+F+J +F +B+ I +C+G=t2+ 25
3

+ t′
3

=G+E+C+G+B+H+H+C+ I =h5
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Abstract. Interleave structure is a well-known period extending
method, by which we can extend the period of an original ZCZ sequence
family to generate a long period ZCZ sequence family. In this paper, we
first present two basic period extending methods: 1. when period extends,
the sequence number keeps unchangeable, while the zero correlation zone
length extends; 2. when period extends, the zero correlation zone length
keeps unchangeable or slightly decreased, while the sequence number ex-
tends. Then we propose the concept of D-matrix, by which to determine
the shift sequence in the interleaved structure and to calculate the zero
correlation zone length of interleaved ZCZ sequence families. In Section
3 and Section 4, two generating algorithms of interleaved ZCZ sequence
families and the corresponding optimal D-matrix are proposed.

1 Introduction

In a typical direct sequence (DS) code division multiple access (CDMA) system,
all users use the same bandwidth, but each transmitter is assigned a distinct
spreading sequence[1]. The well-known binary Walsh sequences or variable length
orthogonal sequences have perfect orthogonality at zero time delay, and are ideal
for synchronous CDMA (S-CDMA) systems, such as the forward link transmis-
sion. Orthogonal spreading sequences can be used if all the users of the same
channel are synchronized in time to the accuracy of a small fraction of one chip,
because the cross correlation between different shifts of orthogonal sequences is
normally not zero. For asynchronous CDMA (A-CDMA) system, no synchroniza-
tion between transmitted spreading sequences is required, that is, the relative
delays between the transmitted spreading sequences are arbitrary. Unfortunately,
according to Welch bounds and other theoretical limits, in theory, it is impossi-
ble to construct an ideal sequence set with impulsive autocorrelation functions
(ACFs) and zero cross correlation functions (CCFs). To overcome these diffi-
culties, zero correlation zone (ZCZ) sequence families are introduced[2,3], which
can be employed in quasisynchronous CDMA (QS-CDMA) system to eliminate

� This work was supported by the National Natural Science Foundation of China
(Grant 60373092).
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the multiple access interference and multipath interference[4]. Generally speak-
ing, the parameters considered in ZCZ sequence families are: period, sequence
number and zero correlation zone length. A sequence family composed of M
sequences with period L and zero correlation zone length Zcz is denoted by an
(L,M,Zcz)-ZCZ sequence family. Tang, Fan and Matsufuji[5] derived that the
theoretical bound of an (L,M,Zcz)-ZCZ sequence family is Zcz ≤ L/M − 1.
The generation of various types of ZCZ sequence families have been reported in
[2]-[4] and [6]-[9].

Interleaved structure is a well-known period extending method, which can
be used to generate many types of sequence families. Gong[10,11] constructed
two classes of sequence families with good correlation property and large linear
complexity by interleaving two ideal autocorrelation sequences. Hayashi[6,7] and
Torri et al. [9] also use interleaved structure to generate long period ZCZ sequence
families.

In this paper, we propose the concept of D-matrix, by which to control the
choice of shift sequences and to calculate the zero correlation zone length of the
interleaved ZCZ sequence families. Based on the theoretical bound of ZCZ se-
quence families, we present two optimal period extending methods(the D-matrix
corresponding to these period extending methods are called optimal D-matrix):

1. Keeping the sequence number unchangeable, the multiple of zero correlation
zone length extending equals to that of period extending;

2. Keeping zero correlation zone length unchangeable or diminishing 1, the
multiple of sequence number extending equals to that of period extending.

The rest of this paper is arranged as follows. Section 2 is some preliminaries
in the design of interleaved ZCZ sequence families. In Section 3, we propose Al-
gorithm I and the corresponding optimal D-matrix of a class of interleaved ZCZ
sequence family. In Section 4, we propose Algorithm II and the corresponding
optimal D-matrix of another class of interleaved ZCZ sequence family.

2 Preliminaries

In the following, the preliminaries in the design of interleaved ZCZ sequence
families are proposed.

2.1 Left Shift Operation

Let p be prime, e ≥ 1, a = (a0, a1, · · · ) a sequence over Zpe . (Besides the
shift sequence, all the sequences considered in this paper have the elements over
Zpe .) For any i > 0, left shift operator Li acting on a is defined as Li(a) =
(ai, ai+1, · · · ). In particular, denote L0(a) = a , L∞(a) = 0.

2.2 Correlation

Let a = (a0, a1, · · · , aL−1) and b = (b0, b1, · · · , bL−1) be two sequences of period
L. For any integer τ ≥ 0, their (periodic) cross correlation function Ca,b(τ) is
defined as



Analysis of Designing Interleaved ZCZ Sequence Families 131

Ca,b(τ) =
L−1∑
i=0

wai−b(i+τ) mod L , τ = 0, 1, · · ·

where w = e
2πi
pe is a peth primitive root. If a = b, then Ca,a(τ) is called the

autocorrelation function of a . Besides, if

Ca,a(τ) =
{
L, if τ ≡ 0 mod L
0, otherwise ,

then we say a is a perfect sequence. Although perfect sequences are very useful
in the design of ZCZ sequence families, the lack of their number prevents them
from being widely used.

2.3 Orthogonal Sequence Families

Let A = {a(0),a (1), ...,a (M−1)} be a sequence family composed of M sequences
with period L and Ci,j be the cross correlation function of a (i) and a (j). If for
all 0 ≤ i 
= j ≤M − 1, Ci,j(0) = 0, then A is defined as an orthogonal sequence
family.

2.4 ZCZ Sequence Families

Let A = {a(0),a (1), · · · ,a (M−1)} be a sequence family composed of M cyclically
distinct sequences with period L, where

a(i) = (a(i)
0 , a

(i)
1 , ..., a

(i)
L−1),

then the zero correlation zone length Zcz is defined as

Zcz = max{ N | if i 
= j, ∀ |τ | ≤ N,Ci,j(τ) = 0;
if i = j , ∀ 0 < |τ | ≤ N,Ci,i(τ) = 0}.

2.5 Interleaved Sequences

Let u = (u0, u1, · · ·ust−1) be a sequence of period st, where both s and t are
not equal to 1, then arrange it as an s× t matrix A[10,11], where

A =

⎡⎢⎢⎣
u0 u1 · · · ut−1

ut ut+1 · · · u2t−1

· · · · · · · · · · · ·
u(s−1)t u(s−1)t+1 · · · u(s−1)t+t−1

⎤⎥⎥⎦ .
Let Aj be the jth column vector of A. If for j = 0, 1, · · · , t− 1, Aj is a phase
shift of a sequence, say a (j), that is, Aj = Lej (a (j)), then u = (Le0(a (0)), · · · ,
Let−1(a (t−1))) is called an (s, t) interleaved sequence. e = (e0, e1, · · · , et−1) is
the shift sequence and a (j) is the base sequence of u .
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3 Construction I of Interleaved ZCZ Sequence Families

In this section, we firstly generalize the construction of Torri, Nakamura and
Suehiro in [9] and present Algorithm I of interleaved ZCZ sequence family. Then
we propose the concept of D-matrix, by which to calculate the zero correlation
zone length and to control the shift sequence in the interleaved structure. Finally
we present the optimal D-matrix corresponding to Algorithm I.

3.1 Algorithm I of Interleaved ZCZ Sequence Families

We generalize the two constructions of interleaved ZCZ sequence families in [9]
to get Algorithm I, which correspond to the first period extending method.

Algorithm I:

1. Suppose that A = {a (0),a (1), · · · ,a (M−1)} is a ZCZ sequence family com-
posed of M sequences with period s and zero correlation zone length Zcz(A),
and B = {b(0), b(1), · · · , b(t−1)} is an orthogonal sequence family of period t,
where t|M , a (r) = (a(r)

0 , a
(r)
1 , · · · , a(r)

s−1), b(k) = (b(k)
0 , b

(k)
1 , · · · , b(k)

t−1), 0 ≤ r ≤
M − 1, 0 ≤ k ≤ t− 1.

2. Choose a sequence e = (e0, e1, · · · , et−1) of period t over Zs as the shift
sequence.

3. For h = 0, 1, · · · ,M/t − 1, construct an (s, t) interleaved sequence u(h) =
(u(h)

0 , u
(h)
1 , · · · , u(h)

st−1) , whose jth column is Lej (a (ht+j)), j = 0, 1, · · · , t− 1.
4. For h = 0, 1, · · · ,M/t− 1, k = 0, 1, · · · , t− 1, let s(h,k) = (s(h,k)

0 , s
(h,k)
1 ,

· · · , s(h,k)
st−1 ) be a sequence of period s · t defined by

s
(h,k)
i = u

(h)
i + b

(k)
i , 0 ≤ i ≤ st− 1,

or equivalently, the jth column of s(h,k) is Lej (a (ht+j))+b(k,j), j = 0, 1, · · · , t−1,
where b(k,j) = (b(k)

j , b
(k)
j , · · · , b(k)

j ) is an s-dimension constant vector. Then the
interleaved ZCZ sequence family S is defined as S = {s(h,k)|h = 0, 1, · · ·M/t−
1, k = 0, 1, · · · , t− 1}.

Remark 1. In the construction of Algorithm I, t is the period extending multiple
of the sequences in A, which must satisfy t|M , where M is the sequence number.

3.2 D-Matrix

Set

ej+t = ej + 1, 0 ≤ j ≤ t− 1,

then the sequence e of period t can be extended to a sequence of period 2t. We
also denote e for that sequence.

From Lemma 2 in [11], we can easily get the correlation function of s(h1,k1)

and s(h2,k2) of our proposed ZCZ sequence family, that is,
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Theorem 1. Let s(h1,k1) and s(h2,k2) be two interleaved ZCZ sequences
generated from Algorithm I and τ = rt + v, then the correlation function
C(h1,k1),(h2,k2)(τ) is

C(h1,k1),(h2,k2)(τ) =
t−1∑
j=0

w
b
(k1)
j −b

(k2)
(j+v) mod t

·Ca(h1t+j),a(h2t+(j+v) mod t)(r + ej+v − ej),

where w is a peth primitive root.

From Theorem 1, we can calculate the correlation function and the zero corre-
lation zone length of S as follows.

Case 1. If τ = 0, then for 0 ≤ h1, h2 ≤M/t− 1, 0 ≤ k1, k2 ≤ t− 1,

C(h1,k1),(h2,k2)(0) =
t−1∑
j=0

wb
(k1)
j −b

(k2)
j · Ca(h1t+j),a(h2t+j)(0).

(1) If h1 = h2, k1 = k2, then C(h1,k1),(h2,k2)(0) = st.
(2) If h1 = h2, k1 
= k2, as for j = 0, 1, · · · , t− 1,

Ca(h1t+j),a(h2t+j)(0) = s,

and {b(0), b(1), · · · , b(t−1)} is an orthogonal sequence family, then

C(h1,k1),(h2,k2)(0) = s ·
t−1∑
j=0

wb
(k1)
j −b

(k2)
j = 0.

(3) If h1 
= h2, as for j = 0, 1, · · · , t− 1,

Ca(h1t+j),(h2t+j)(0) = 0,

then C(h1,k1),(h2,k2)(0) = 0.
Case 2. Since C(h1,k1),(h2,k2)(−τ) = C(h2,k2),(h1,k1)(τ)∗, to calculate the zero

correlation zone length of S , we only need to consider the case of τ > 0 . Let
τ = rt + v 
= 0, 0 ≤ r ≤ s − 1, 0 ≤ v ≤ t − 1. If |r + ej+v − ej | ≤ Zcz(A) holds
for j = 0, 1, · · · , t− 1, then

Ca(h1t+j),a(h2t+(j+v) mod t)(r + ej+v − ej) = 0,

therefore C(h1,k1),(h2,k2)(τ) = 0. Obviously, if v = 0, C(h1,k1),(h2,k2)(τ) = 0 holds
when r ≤ Zcz(A).

Let Zcz(S) be the zero correlation zone length of S . Then from above we
know

Zcz(S ) = max{N | 0 ≤ τ ≤ N, τ = rt+ v and (r, v)
satisfying |r + ej+v − ej| ≤ Zcz(A)}
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For τ = rt+v = 1, 2, · · · , st−1, j = 0, 1, · · · , t−1, denote eτ,j = r+ej+v−ej ,
then we have

E = [ei,j ](st−1)×t

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1 − e0 e2 − e1 · · · et−1 − et−2 et − et−1

e2 − e0 e3 − e1 · · · et − et−2 et+1 − et−1

· · · · · · · · · · · · · · ·
et−1 − e0 et − e1 · · · e2t−3 − et−2 e2t−2 − et−1

1 1 · · · 1 1
1 + e1 − e0 1 + e2 − e1 · · · 1 + et−1 − et−2 1 + et − et−1

· · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1 − e0 e2 − e1 · · · et−1 − et−2 1 + e0 − et−1

e2 − e0 e3 − e1 · · · 1 + e0 − et−2 1 + e1 − et−1

· · · · · · · · · · · · · · ·
et−1 − e0 1 + e0 − e1 · · · 1 + et−3 − et−2 1 + et−2 − et−1

1 1 · · · 1 1
1 + e1 − e0 1 + e2 − e1 · · · 1 + et−1 − et−2 2 + e0 − et−1

· · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

For τ = 1, 2, · · · , st− 1, in order to calculate the zero correlation zone length
of S, we need to judge whether the elements of the τth row in E belonging to
[−Zcz(A), Zcz(A)] or not.

Let d0,0 = e1−e0, d0,1 = e2−e1, · · · , d0,t−1 = 1+e0−et−1, then we have d0,0+
d0,1 + · · ·+d0,t−1 ≡ 1(mod t). Obviously given e0, from d0,0, d0,1, · · · , d0,t−2, we
can uniquely determine the shift sequence e. Furthermore, we have

Theorem 2. Let E = D = [di,j ]0≤i≤st−1,0≤j≤t−1, then we have the following
recursive formulas:

di,j = di−1,(j+1) mod t + d0,j , (2)

and

dri,j =
r−1∑
k=0

di,(j+ki) mod t. (3)

Proof. From (1) every element in E can be divided into two parts: the subtrahend
and minuend.

If 0 ≤ j ≤ t− 2, then the minuend of the ith row and the jth column element
di,j is equal to the minuend of the (i−1)th row (j+1)th column element di−1,j+1,
while the difference of subtrahend between di,j and di−1,j+1 is ej+1 − ej, which
is exactly d0,j , so di,j = di−1,j+1 + d0,j .

If j = t−1, the difference between the minuend of the ith row and the (t−1)th
column element di,t−1 and the first row and the (t− 1)th column element d0,t−1

is ej − e0, which is exactly di−1,0, so di,t−1 = di−1,0 + d0,t−1.
Thus we have

di,j = di−1,(j+1) mod t + d0,j .
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Repeating using (2), then we can represent D as

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0,0 d0,1 · · · d0,t−1

d0,0 + d0,1 d0,1 + d0,2 · · · d0,t−1 + d0,0

· · · · · · · · · · · ·∑t−2
i=0 d0,i

∑t−2
i=0 d0,(i+1) mod t · · ·

∑t−2
i=0 d0,(i+t−1) mod t

1 1 · · · 1
1 + d0,0 1 + d0,1 · · · 1 + d0,t−1

· · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

From (4) we can also have

dri,j =
r−1∑
k=0

di,(j+ki) mod t.

Remark 2. From (2) and d0,0+d0,1+ · · ·+d0,t−1 ≡ 1( mod t), we know dit+k,j =
dk,j + i. Thus to calculate the zero correlation zone length of S , we only need to
consider the first t rows of D-matrix.

Remark 3. From (3) and Remark 2 we know that the D-matrix can be totally
determined by its rth row, where gcd(r, t) = 1.

Remark 4. Denote Li(D) as the matrix every row of which is cyclically left shift
i positions of the corresponding row of D. Then the zero correlation zone length
determined by Li(D) is equal to that determined by D. Next we only consider
cyclically inequivalent D-matrix to generate the shift sequence of interleaved
ZCZ sequence families.

3.3 The Optimal D-Matrix Corresponding to Algorithm I

Next we present the optimal D-matrix corresponding to the interleaved ZCZ
sequence families generated by Algorithm I.

Theorem 3. Suppose A is an (L,M,Zcz)-ZCZ sequence family. For any positive
integer t, t|M , let D be the D-matrix whose first row is given as (0, 0, · · · , 0︸ ︷︷ ︸

t−1

, 1).

Then we can construct an (L · t,M,Zcz · t)-ZCZ sequence family generated by Al-
gorithm I.

Proof. The first row of D is (0, 0, · · · , 0︸ ︷︷ ︸
t−1

, 1), then the first t rows of D can be

calculated from recursive formula (2) as⎡⎢⎢⎣
0 0 · · · 0 1
0 0 · · · 1 1
· · · · · · · · · · · · · · ·
1 1 · · · 1 1

⎤⎥⎥⎦ . (5)

From (5) and Remark 2 we know that the zero correlation zone length of gener-
ated ZCZ sequence family is Zcz · t. #
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In fact, the interleaved ZCZ sequence family constructed by the D-matrix of
Theorem 3 is a generalization of Torri, Nakamura, and Suehiro[9].

Example 1. From a (8, 4, 1)-ZCZ sequence family proposed by Deng and Fan in
[3], we can get a (32, 4, 4)-ZCZ sequence family by Algorithm I.

1. Choose a (8, 4, 1)-ZCZ sequence family A = {a(0),a (1),a (2),a (3)} =
{(1, 1, 0, 0, 0, 1, 1, 0),(1, 1, 1, 1, 0, 1, 0, 1),(0, 1, 1, 0, 1, 1, 0, 0),(0, 1, 0, 1,1,1,1, 1)} and
an orthogonal sequence family B={b(0), b(1), b(2), b(3)}={(0, 0, 0, 0), (0, 0, 1, 1),
(0, 1, 0, 1), (0, 1, 1, 0)} of period 4.

2. Let e0 = 0, e1 = 1, e2 = 1, e3 = 1.
3. For k = 0, 1, 2, 3, we can construct sequences s(k), whose jth column is

given by Lej (a (j)) + bk,j . For example, the matrix form of s(1) is as follows:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 1 1 0
0 1 0 1
0 0 1 1
0 1 1 1
1 0 0 1
1 1 0 1
0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0
1 1 0 1
0 1 1 0
0 0 0 0
0 1 0 0
1 0 1 0
1 1 1 0
0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus the obtained sequence family S = {s(0), s(1), s(2), s(3)}, where
s(0) =(1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0),
s(1) =(1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1),
s(2) =(1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1),
s(3) =(1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0).
Also, we can find out that the zero correlation zone length of S is 4. For exam-

ple, for τ=0, 1, · · · , 31, the autocorrelation of s(0) is {32, 0, 0, 0, 0, 4, 0,−12, 0, 12,
0,−4, 0, 0, 16, 0, 0, 0, 16, 0, 0,−4, 0, 12, 0,−12, 0, 4, 0, 0, 0, 0}, the cross correlation
of s(0) and s(1) is {0, 0, 0, 0, 0, 4, 8, 4, 0,−4,−8,−4, 0, 0, 0, 0, 0, 0, 0, 0, 0,−4, 8,−4,
0, 4,−8, 4, 0, 0, 0, 0}.

4 Construction II of Interleaved ZCZ Sequence Families

In this section, we present Algorithm II to generate another class of inter-
leaved ZCZ sequence families, which corresponds to the second period extending
method. Also the optimal D-matrix is presented according to the cases that
period extends prime times and composite times.

4.1 Algorithm II for Interleaved ZCZ Sequence Families

Algorithm II:
1. Let A = {a(0),a (1), · · · ,a (M−1)} be a ZCZ sequence family composed

of M sequences with period s and zero correlation zone length Zcz(A), where
a (h) = (a(h)

0 , a
(h)
1 , · · · , a(h)

s−1), 0 ≤ h ≤M−1. From A we can generate a sequence
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family G = {G0,G1, · · · ,GM−1} composed of M interleaved sequences, where
Gi = (g (i,0), g (i,1), · · · , g (i,t−1)), g (i,k) ∈ A, 0 ≤ i ≤ M − 1, 0 ≤ k ≤ t − 1, and
different sequences in G are orthogonal to each other, that is,

∀ 0 ≤ i 
= j ≤M − 1,
t−1∑
k=0

Cg(i,k),g(j,k)(0) = 0.

2. Let B = {b(0), b(1), · · · , b(t−1)} be an orthogonal sequence family of period
t, where b(k) = (b(k)

0 , b
(k)
1 , · · · , b(k)

t−1), 0 ≤ k ≤ t− 1.
3. Choose a shift sequence e = (e0, e1, · · · , et−1) of period t over Zs.
4. For h = 0, 1, · · · ,M−1, k = 0, 1, · · · , t−1, construct an (s, t) interleaved se-

quence u(h,k) = (u(h,k)
0 , u

(h,k)
1 , · · · , u(h,k)

st−1) , whose jth column is Lej (g (h,j)), j =
0, 1, · · · , t− 1.

5. For h = 0, 1, · · · ,M − 1, k = 0, 1, · · · , t− 1, let s(h,k) = (s(h,k)
0 , s

(h,k)
1 , · · · ,

s
(h,k)
st−1 ) be a sequence of period s · t defined by

s
(h,k)
i = u

(h,k)
i + b

(k)
i , 0 ≤ i ≤ st− 1,

or equivalently, its jth column is Lej (g (h,j)) + b(k,j), j = 0, 1, · · · , t − 1, where
b(k,j) = (b(k)

j , b
(k)
j , · · · , b(k)

j ) is an s-dimension constant vector. Then the inter-
leaved ZCZ sequence family S is defined as S = {s(h,k)|h = 0, 1, · · ·M − 1, k =
0, 1, · · · , t− 1}.

Remark 5. Similar to the analysis of Algorithm I, for τ = 1, 2, · · · , st−1, to cal-
culate the zero correlation zone length of the sequences generated by Algorithm
II, we need to judge whether the elements of the τth row of D-matrix belonging
to [−Zcz(A), 0) ∪ (0, Zcz(A)] or not.

4.2 The Optimal D-Matrix Corresponding to Period Extending p
Times

The optimal D-matrix corresponding to the second construction method is present
in this section. First we consider the case when period extending multiple is a
prime, that is:

Theorem 4. There exists a proper D-matrix by which we can generate an (L·p,
M · p, Z ′

cz)-ZCZ sequence family from an (L,M,Zcz)-ZCZ sequence family based
on Algorithm II, where p is a prime and

Z
′
cz =

{
Zcz , if Zcz 
≡ −1 mod p
Zcz − 1, otherwise .

Proof. If Zcz ≡ r 
= −1 mod p, then we can construct a D-matrix where its

(r + 1)th row is (−�Zcz

p
	,−�Zcz

p
	, · · · ,−�Zcz

p
	︸ ︷︷ ︸

p−1

, (p− 1)�Zcz

p 	+ r + 1). From (3)
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we know that the different elements in the 2(r + 1)th row are −2�Zcz

p 	 and
(p − 2)�Zcz

p 	 + r + 1, ..., and the different elements in the (p − 1)(r + 1)th row
are −(p − 1)�Zcz

p 	 and �Zcz

p 	 + r + 1. Next we calculate the first p rows of D-
matrix. That is, if k(r + 1) ≡ i mod p, (k(r + 1) − i)/p = j, then the elements
in the ith row of D-matrix can be determined by those of the k(r + 1)th row
subtracting j. Based on Remark 2 , Remark 3 and Remark 5, we know that
Z

′
cz = p�Zcz

p 	+ r = Zcz.
If Zcz ≡ −1( mod p), then we can construct a D-matrix where its (p−1)th row

is (−�Zcz

p
	,−�Zcz

p
	, ...,−�Zcz

p
	︸ ︷︷ ︸

p−1

, (p− 1)�Zcz

p 	+ p− 1) or (−�Zcz

p
	, ...,−�Zcz

p
	︸ ︷︷ ︸

a

,

− �Zcz

p 	 − 1,−�Zcz

p
	, ...,−�Zcz

p
	︸ ︷︷ ︸

p−2−a

, (p − 1)�Zcz

p 	+ p), where 0 ≤ a ≤ p − 2. Then

from Remark 2, Remark 3 and Remark 5, we know that Z
′
cz = Zcz − 1.

4.3 The Optimal D-Matrix Corresponding to Period Extending n
Times

For the case of period extending pe times, from Theorem 4 we know that if
Zcz 
≡ −1 mod p, then after period extending p times, the zero correlation zone
length is Z

′
cz = Zcz. Repeat this operation e times, then we can generate a ZCZ

sequence family with zero correlation zone length Z
′
cz = Zcz. If Zcz ≡ −1 mod p,

after period extends p times, the zero correlation zone length is Z
′
cz = Zcz − 1.

Repeat this operation e times, we can generate a ZCZ sequence family with zero
correlation zone length Z

′
cz = Zcz − 1. Generally, for n = pα1

1 ...pαk

k , we have

Theorem 5. There exists a proper D-matrix by which we can generate an (L ·
n,M · n,Z ′

cz)-ZCZ sequence family from an (L,M,Zcz)-ZCZ sequence family,
where n = pα1

1 ...pαk

k and

Z
′
cz =

{
Zcz , if ∀ 1 ≤ i ≤ k, Zcz 
≡ −1 mod pi

Zcz − 1, otherwise .

For binary interleaved ZCZ sequence families, the most ordinary case is period
extending 2e times. There exist two methods of period extending 2e times, one
is period doubled, then repeat this operation e times, the other is period directly
extending 2e times. Next we consider the second method, that is,

Theorem 6. Suppose A is an (L,M,Zcz)-ZCZ sequence family and Zcz ≡
r mod 2e.

(1) If Zcz is even, then there exists a proper D-matrix D1 by which we can
generate a (2e ·L, 2e ·M,Zcz)-ZCZ sequence family from A, where the (r+ 1)th
row of D1 is

(−�Zcz

2e
	,−�Zcz

2e
	, ...,−�Zcz

2e
	︸ ︷︷ ︸

2e−1

, (2e − 1)�Zcz

2e
	+ r + 1).
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(2) If Zcz is odd, then there exists a proper D-matrix D2 by which we can
generate a (2e · L, 2e ·M,Zcz − 1)-ZCZ sequence family from A, where the rth
row of D2 is

(−�Zcz

2e
	,−�Zcz

2e
	, ...,−�Zcz

2e
	︸ ︷︷ ︸

2e−1

, (2e − 1)�Zcz

2e
	+ r),

or

(−�Zcz

2e
	, ...,−�Zcz

2e
	︸ ︷︷ ︸

a

,−�Zcz

2e
	 − 1,−�Zcz

2e
	, ...,−�Zcz

2e
	︸ ︷︷ ︸

2e−a−2

, (2e − 1)�Zcz

2e
	+ r + 1),

where 0 ≤ a ≤ 2e − 2.

The proof of Theorem 6 can be got similar to that of Theorem 4.

Example 2. Construct a (64, 8, 4)-ZCZ sequence family from a (32, 4, 4)-ZCZ
sequence family by Algorithm II.

1. Let A = {a(0),a (1),a (2),a (3)} be a (32, 4, 4)-ZCZ sequence family, B =
{b(0), b(1)} = {(0, 0), (0, 1)} be an orthogonal sequence family of period 2, where

a (0)=(1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0),
a(1)=(1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1),
a(2)=(1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1),
a(3)=(1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0).
2. Choose shift sequence e0 = 2, e1 = 5;
3. A ZCZ sequence family S = {s(i)|i = 0, 1, . . . , 7} can be constructed from

Algorithm II, where
s(0) ={1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1,

1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1},
s(1) ={1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0,

1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0},
s(2) ={0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1,

0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1},
s(3) ={0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0,

0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0},
s(4) ={1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1,

1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1},
s(5) ={1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0,

1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0},
s(6) ={0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1,

0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1},
s(7) ={0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0,

0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0}.
Also we can find out that S is a (64, 8, 4)-ZCZ sequence family. For example,
for τ = 0, 1, · · · , 63, the autocorrelation of s(0) is given by {64, 0, 0, 0, 0, 36, 0, 0,
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0,−12, 8, 0, 0, 12,−24, 4, 0,−4, 24,−12, 0, 0,−8, 28, 0, 0, 0,−4, 32, 0, 0, 16, 0, 16, 0,
0, 32,−4, 0, 0, 0, 28,−8, 0, 0,−12, 24,−4, 0, 4,−24, 12, 0, 0, 8,−12, 0, 0, 0, 36, 0, 0, 0,
0}, the cross correlation of s(0) and s(1) is given by {0, 0, 0, 0, 0, 28, 0, 0, 0, 12, 0, 0,
0,−12, 0, 4, 0, 4, 0,−12, 0, 0, 0,−4, 0, 0, 0,−4, 0, 0, 0,−16, 0, 16, 0, 0, 0, 4, 0, 0, 0, 4, 0,
0, 0, 12, 0,−4, 0,−4, 0, 12, 0, 0, 0,−12, 0, 0, 0,−28, 0, 0, 0, 0}.

5 Conclusions

In this paper, we analyze the construction method of interleaved ZCZ sequence
families and propose two generation algorithms. The optimal D-matrix corre-
sponding these algorithms are also presented here. These algorithms can recur-
sively act on an original ZCZ sequence family to generate ZCZ sequence families
with both long zero correlation zone length and large sequence number.
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Abstract. The use of jump control technique provides efficient and
secure ways for generating key-stream for stream ciphers. This design
approach was recently implemented in some algorithms submitted to
eSTREAM, the ECRYPT Stream Cipher Project. However, inappropri-
ately chosen parameters for jumping constructions can completely un-
dermine their security. In this paper we describe a new inherent property
of jump registers that allows to construct linear relations in their out-
put. We illustrate our results by building a key-recovery attack on the
Pomaranch stream cipher. We also suggest a slight modification to the
jump register configuration in Pomaranch that allows to protect against
this type of attacks.

Keywords: Cryptanalysis, jump register, key-stream generator, linear
relations, Pomaranch, stream cipher.

1 Introduction

Linear feedback shift registers (LFSR’s) are known to allow fast implementation
and produce sequences with a large period and good statistical properties (if
the feedback polynomial is chosen appropriately). But inherent linearity of these
sequences results in susceptibility to algebraic attacks. That is the prime rea-
son why LFSR’s are not used directly for key-stream generation. A well-known
method for increasing the linear complexity preserving at the same time a large
period and good statistical properties is to apply clock control, i.e., to irregularly
step an LFSR through successive states.

Due to the multiple clocking, key-stream generators that use clock-controlled
LFSR’s have decreased rate of sequence generation since such generators are

G. Gong et al. (Eds.): SETA 2006, LNCS 4086, pp. 141–152, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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usually stepped a few times to produce just one bit of the key-stream. The
efficient way to let an LFSR move to a state that is more than one step further
but without having to step though all the intermediate states (so called, jumping)
was suggested in [1]. Further, in Section 2.1, we give a brief description of the
this technique.

The idea of jump registerswas used to design complete stream ciphers MICKEY
and Pomaranch that were submitted to the ECRYPT Stream Cipher Project (see
[2]). In this paper, we focus on the latter algorithm to illustrate our results in the
analysis of key-streamgenerators thatuse jumpregisters.Pomaranch [3] is a stream
cipher that follows a classical design of synchronous bit-oriented stream ciphers
and consists of a key-stream generator producing a secure sequence of bits that is
further XORed with the plain text previously converted into bits. The key-stream
generator of Pomaranch is called Cascade Jump Controlled Sequence Generator
(CJCSG)and is primarily intended for hardware implementation.TheCJCSGuses
a one clock pulse cascade construction of so called jump registers [4] being essen-
tially linear finite state machines with a special transition matrix. Moreover, the
characteristic polynomial of the transition matrix was made to be primitive and
satisfying additional constraints that arise from the need to use the register in a
cascade jump control setup.

In this paper, we present our findings in the security analysis of key-stream
generators that use jump control technique and illustrate our approach by build-
ing a key-recovery attack on Pomaranch that works with the complexity much
lover than the exhaustive key search. However, the spotted weakness has a gen-
eral nature and can potentially be used to attack other stream ciphers that are
built on irregularly clocked registers. In particular, this weakness leads to the bi-
ases in the distribution of certain linear relations in the output sequence of jump
registers. If parameters of the registers are not chosen carefully then this bias
can be high enough to allow running a correlation attack with the complexity
lower than the exhaustive key search.

In Section 2, we outline some details of jumping technique and of Pomaranch
key-stream generator that are important for understanding the analysis that fol-
lows. Section 3 contains main theoretical results about finding linear relations
in the output sequence of jump registers and calculating corresponding biases.
We apply the theory to the concrete configuration of Pomaranch registers in
Section 4.1 and build the general framework of the key-recovery attack in Sec-
tion 4.2. Finally, we suggest slight modification of the Pomaranch jump register
configuration that allows to protect against this type of attacks increasing the
complexity to O(2132) (higher than the exhaustive key search) and this is dis-
cussed in Section 5. This modification was actually applied to Pomaranch version
2 (see [5]).

2 Jump Registers and Cascade Construction

We start this section with a brief description of jumping technique and then
give an outline of the Pomaranch stream cipher that is built on jump registers
combined in a cascade construction.
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2.1 Jumping Technique

Consider an autonomous Linear Finite State Machine (LFSM), not necessarily
an LFSR, defined by the transition matrixA of size L over GF(2) with a primitive
characteristic polynomial f(x) = det(xI + A), where I is the identity matrix.
It is well known that A is similar to the companion matrix of f(x), i.e., there
exists a nonsingular matrix M such that M−1AM = S(f). Let zt (t = 0, 1, 2, . . .)
denote the inner state of the LFSM at time t. Then zt = z0A

t = z0MS(f)tM−1

and ztM = (z0M)S(f)t. Thus, LFSMs defined by A and S(f) are equivalent.
Take a matrix representation of the elements of the finite field GF(2L). Since

f(S(f)) = 0 and f(x) is primitive, S(f) can play the role of a root of f that is a
primitive element in GF(2L). Then S(f)+I being an element of GF(2L) is equal
to S(f)J for some power J and, thus, AJ = MS(f)JM−1 = MS(f)M−1 + I =
A+I. Note that identity S(f)J = S(f)+I is equivalent to xJ ≡ x+1 ( mod f(x))
and, therefore, such a value of J is called the jump index of f . It is important to
observe here that changing the transition matrix of the LFSM from A to A+ I
results in making J steps through the state space of the original LFSM.

Let f⊥(x) denote the characteristic polynomial of the modified transition
matrix A+I that is equal to f⊥(x) = det(xI+A+I) = f(x+1). The polynomial
f⊥(x) is called the dual of f(x). It is easy to see that f(x) is irreducible if and
only if f⊥(x) is irreducible (however, this equivalence does not hold for being
primitive). It can also be shown (see [4, Theorem 2]) that if the dual polynomial
f⊥ is primitive (the jump index of f⊥, naturally, exists) then the jump index of
f is coprime with λ = 2L − 1 and J⊥ ≡ J−1 (mod λ).

The transition matrix A that defines the LFSM used in the CJCSG has a very
special form, namely,

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dL 0 0 · · · 0 1
1 dL−1 0 · · · 0 tL−1

0 1 dL−2
. . .

...
...

0 0
. . . . . . 0

...
...

...
. . . 1 d2 t2

0 0 · · · 0 1 d1 + t1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1)

This is the companion matrix of a polynomial of degree L (L is even) with
additional L/2 ones on the main diagonal.

2.2 Outline of Pomaranch

Pomaranch follows a classical design of a synchronous, additive, bit-oriented
stream cipher and consists of a key-stream generator producing a secure sequence
of bits that is further bitwise XORed with the plain text previously converted
into bits. After the initialization that comprises key setup, IV setup and the
runup (see [3] for the details), the key-stream generator of Pomaranch is run in
the generation mode showed in Fig. 1.
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Fig. 1. Key-Stream Generation Mode of Pomaranch

The generator consists of nine irregularly clocked registers R1 to R9 (also
called Jump Registers (JR)) that are combined in a cascade construction. Each
register implements an autonomous LFSM and is built on 14 memory cells, each
of them acting either as a simple delay shift cell (S-cell) or feedback cell (F-cell),
depending on the value of the Jump Control (JC) bit. At any moment, half of the
cells in each register are S-cells, while the others are F-cells which is seen as an
important feature against power and side-channel attacks. LFSM implemented
by every JR is described by the binary transition matrix A shown in (1), where
t1, . . . , tL−1 are defined by the positions of feedback taps and nonzero d1, . . . , dL

correspond to the positions of F-cells in the register. In the particular case of
Pomaranch L = 14, only t6 = 1 and d1 = d3 = d7 = d8 = d9 = d11 = d13 = 1.
Transition matrix A is applied if the JC value is zero, otherwise, all cells are
switched to the opposite mode which is equivalent to changing the transition
matrix to A+ I with I being the identity matrix. Let Rt

i denote the state of the
register Ri at a time t ≥ 0. Then

Rt+1
i = (A+ JCt

i · I)Rt
i (i = 1, . . . , 9) ,

where JCt
i denotes the jump control bit for Ri at time t.

The 128-bit key K is divided into eight 16-bit subkeys k1 to k8. The current
states of the registers Rt

1 to Rt
8 are nonlinearly filtered using a function that

involves the corresponding subkey ki (i = 1, . . . , 8). These functions provide an
output of eight bits ct1 to ct8 which are used to produce the bits JCt

2 to JCt
9

controlling the registers R2 to R9 at time t as follows

JCt
i = ct1 ⊕ . . .⊕ cti−1 (i = 2, . . . , 9) .
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The jump control bit JC1 of register R1 is permanently set to zero. The key-
stream bit generated at time t (denoted rt) is the XOR of nine bits zt

1 to zt
9

tapped from the second cell of the register states Rt
1 to Rt

9 so rt = zt
1⊕ . . .⊕ zt

9.

3 Linear Relations in Jump Registers

Configuration of the jump registers in Pomaranch is chosen in such a way that
the characteristic polynomial C(x) of the binary transition matrix A in (1) is
primitive and is neither self-reciprocal nor self-dual nor dual-reciprocal, i.e., A
belongs to a primitive S6 set, that is a set of six primitive polynomials which
are each others reciprocals and duals (for the details see [4]). Obviously, the
characteristic polynomial of A+I is the dual C⊥(x) = C(x+1) and is primitive.
Clocking of the jump registers is implemented by multiplying the state by the
transition matrix A or A+ I.

Let Z = {zt}∞t=0 denote the output sequence of a jump register being any
component in the sequence of register states. Starting from some state Rt, the
first output bit zt is not affected by the jump control bits in (JCt, . . . , JCt+L−1),
the second output bit zt+1 is defined by JCt, the third zt+2 is defined by
(JCt, JCt+1) and so on.

Every output bit can be presented as a linear combination of L bits from
the initial state R0 and thus any L + 1 bits of the output sequence are linearly
dependent. The linear relation is defined by the relevant jump control bits and
does not depend on the initial state of the register. Take such a relation that
holds on L+1 consecutive bits of Z at the shift position t. Also assume that this
relation holds for every component sequence of the register (i.e., irrespective of
position the output sequence is tapped from). This means that for some set of
binary coefficients (�0, �1, . . . , �L) and any initial state we have �0zt + �1z

t+1 +
. . .+ �Lz

t+L = 0 or, equivalently, that the following identity holds

�0I +
L∑

i=1

�i

i−1∏
k=0

(A+ JCt+kI) = 0 .

Since C(x), the characteristic polynomial of A, is in particular, irreducible, it
coincides with the minimal polynomial of A. Thus, the latter identity holds if
and only if

�0 +
L∑

i=1

�i

i−1∏
k=0

(x+ JCt+k) =
L∑

i=0

�ix
i−ki (x+ 1)ki = C(x) , (2)

where 0 ≤ ki ≤ i are defined by the control bits JCt, . . . , JCt+L−1, namely,
k0 = 0 and ki is equal to the binary weight of vector (JCt, . . . , JCt+i−1). Thus,
if assuming the jump control sequence is purely random, then the values of ki

are binomially distributed. Since the degree of C(x) is L and C(0) = C(1) = 1
then the coefficients at the highest-order and the constant term of the polyno-
mial standing on the left hand side of (2) should be nonzero, i.e., �0 = �L = 1
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for any linear relation in the jump register output. Given an arbitrary jump
control sequence (that provides the values of ki) the solution of (2) for the un-
knowns �i can be found applying a simplified version of Gaussian elimination.
Such a solution always exists and, in particular, this can be easily seen from
the matrix of the system which is triangular and contains ones on the main
diagonal.

The complexity of solving the system is linear in L (if counting word op-
erations). Indeed, let the binary coefficients of the binomial expansion of an
additive term xi−ki (x + 1)ki be packed into words. Then, starting with i = 0
and x0−k0 (x + 1)k0 = 1, every next term, depending on the value of JCt+i, is
equal to the previous one multiplied by x (shift the coefficient vector by one bit)
or multiplied by x+ 1 (shift and add). Thus, expansions of all L+ 1 terms can
be computed with O(L) word operations. Further set �L = 1 and add the coeffi-
cient vector of xL−kL(x+1)kL to C(x). If the degree of the obtained polynomial
is equal L − 1 then set �L−1 = 1, otherwise set �L−1 = 0. Proceed further in
a similar way till all the unknowns �i are found. The total complexity remains
linear in L.

Take a linear relation defined by the set of binary coefficients �0, . . . , �L with
�0 = �L = 1 and take a set of weights {ki | i = 0, . . . , L; �i = 1} with k0 = 0,
ki ≤ kj if i < j and kj − ki ≤ j − i such that∑

i=0,...,L; �i=1

xi−ki (x+ 1)ki = C(x) . (3)

Now take two neighboring additive terms from the left hand side of the last
identity being xi−ki (x+1)ki and xj−kj (x+1)kj with i < j. Then the number of
possible (j−i)-long sections of the jump control sequence leading from xi−ki(x+
1)ki to xj−kj (x+1)kj is equal to

(
j−i

kj−ki

)
(these are exactly the sequences with the

binary weight of (JCt+i, . . . , JCt+j−1) equal to kj − ki). In a similar manner,
starting from the constant term x0(x + 1)0 at �0 = 1 and proceeding till the
highest-order term at �L = 1 is reached we can find the total number of L-
long jump control sequences that correspond to the given linear relation and the
set of weights. This number is obtained as a product of the relevant binomial
coefficients for all �i 
= 0 and i > 0.

As can be seen from (2), the set of all possible linear relations that correspond
to different control sequences and the number of their occurrences only depend
on the characteristic polynomial C(x) of the jump register. As the linear relation
occurring most often plays an essential role in the key-recovery attack, we will
call its occurrence number the Linear Equivalence Bias (LEB) of the polynomial.
All occurrence numbers together form a Linear Equivalence Spectrum (LES) of
the polynomial. It can be easily seen by interchanging the roles of x and x + 1
that C(x) and C⊥(x) have the same LES. The LES value for any linear relation
can be calculated as a sum consisting of terms being the product of binomial
coefficients. Every set of weights ki satisfying (3) provides one additive term to
the sum.
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Again take a linear relation and a set of weights satisfying (3). Applying the
following Doubling Rule

xa(x+ 1)b =

{
xa−1(x+ 1)b + xa−1(x + 1)b+1,

xa(x+ 1)b−1 + xa+1(x + 1)b−1

to different additive terms xi−ki (x + 1)ki in the left hand side of (3) we can
find other relations that have a nonzero LES value. If the original relation has
�i−1 = 0 and �i = 1 then the new one has �i−1 = �i = 1 that can be seen
as doubling of the coefficient �i. It is not difficult to see that having the LES
value of a linear relation that is expressed as a sum of products and applying
the doubling rule to any �i = 1 (assuming �i−1 = 0) gives us another relation
with �i = �i−1 = 1 and a sum with a doubled number of additive terms that is
equal to the LES value of a new relation.

The most obvious example is to apply the doubling rule to the highest-order
term at the coefficient �L = 1 when �L−1 = 0 which leaves �L unchanged and
gives rise to �L−1 = 1. Due to the binomial identity

(
n
k

)
+
(

n
k−1

)
=
(

n+1
k

)
the LES

value computed for the new linear relation will be the same as for the old one.
This, in particular, implies that all the values in an LES appear even number
of times. Applying the doubling rule to other terms results in new relations
having higher or lower LES values. This feature will be illustrated in Section 4.1.
Applying the doubling rule in the opposite direction results in the merge of two
terms.

Note that using the presented technique we can evaluate LES values for some
linear relations of length L+1 in the output sequence of a jump control register.
In some cases this value is equal to the LEB of a polynomial meaning that we
have found a relation that belongs to the ones occurring most often. However,
we can not currently provide the algorithm for evaluating the LEB with the
complexity lower than O(L 2L) (checking through all JC sequences of length L
and each time implementing a simple version of Gaussian elimination of length
L). Finding a less complex algorithm remains an interesting open problem.

4 Key-Recovery Attack Using Linear Relations

In this section we calculate the LEB for the concrete configuration of jump
registers in Pomaranch as well as for some minor modifications of the cipher.
We also give some intuitive technique for finding the LEB in general. Then
we mount a key-recovery attack with the time complexity much less than the
exhaustive key search.

4.1 Linear Relations and Biases for Registers in Pomaranch

The characteristic polynomial of the transition matrix (1) can be found directly
as follows

C(x) = 1 +
L−1∑
i=0

ti

L∏
j=i+1

(dj + x) ,
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where t0 = 1 is introduced for simplicity of the formula. Now assume L is even,
a jump register of length L has two feedback taps (i.e., only t0 = tn = 1 for some
0 < n < L), there are k F-cells among the first n cells (i.e., only k values from
d1, . . . , dn are nonzero) and the total number of F-cells is L/2. Then

C(x) = 1 + x
L
2 +k−n(x+ 1)

L
2 −k + x

L
2 (x+ 1)

L
2 . (4)

Placing this in (2) one immediately spots the evident linear relation zt+zt+L−n+
zt+L = 0 that we call basic. The corresponding equation coming from (2)

1+xL−n−kL−n(x+1)kL−n +xL−kL(x+1)kL = 1+x
L
2 +k−n(x+1)

L
2 −k+x

L
2 (x+1)

L
2

can be shown to be satisfied only by kL = L/2 and kL−n = L/2− k. Thus, this
trinomial linear relation has the LES value given by(

L− n
L
2 − k

)(
n

k

)
. (5)

Assuming n > 1 and applying the doubling rule to the senior term in (4) we get
another relation zt + zt+L−n + zt+L−1 + zt+L = 0 having the same LES value.

Restricting our options further to the registers of length L = 14 that have
a characteristic polynomial belonging to a primitive S6 set, we are left with
the following five alternative (n, k)-pairs of parameters (6, 2), (7, 2), (7, 3), (8, 3)
and (11, 5). Note that two polynomials corresponding to parameters (n, k) and
(n, n− k) form a dual pair. By (5), the corresponding LES values for the basic
trinomial relations are 840, 441, 1225, 840 and 1386 respectively. For all the
configurations except (7, 2) these turned out to be the LEB values of the charac-
teristic polynomials (4). For the remaining case (n, k) = (7, 2) the basic relation
is zt + zt+7 + zt+14 = 0. Applying the doubling rule to the middle term here we
obtain a new linear relation zt + zt+6 + zt+7 + zt+14 = 0 and a new LES value(
6
1

)
·
(
7
1

)
+
(
6
2

)
·
(
7
3

)
= 567 equal to the LEB in this case. On the other hand, for

(n, k) = (6, 2), applying the doubling rule to the middle term in the basic relation
zt +zt+8 +zt+14 = 0 we obtain a new linear relation zt +zt+7 +zt+8 +zt+14 = 0
having the LES value

(
7
5

)
·
(
6
1

)
+
(
7
4

)
·
(
6
3

)
= 826, the second largest for this

polynomial. We believe that in general, starting from the basic relation and con-
secutively applying the doubling rule, splitting and merging various terms, one
can find all linear relations that hold at least for one control sequence. Tracking
the LES values computed after each split or merge one can also find the LEB of
the characteristic polynomial.

The concrete parameters initially chosen for Pomaranch are (6, 2) giving the
basic trinomial relation zt+zt+8+zt+14 = 0. The resulting LEB of

(
8
5

)
·
(
6
2

)
= 840

is high enough to mount the key-recovery correlation attack that we are going to
present in Section 4.2. Another linear relation zt + zt+8 + zt+13 + zt+14 = 0 with
the same LES value 840 is obtained applying the doubling rule to the senior term
of the basic relation. The use of both relations makes the attack more efficient.
The LES of the corresponding characteristic polynomial contains just 334 linear
relations having nonzero occurrence numbers out of 213 = 8192 possible.
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Suppose the LEB value of the characteristic polynomial of a jump register on
L memory cells is F > 0 that corresponds to the linear relation on the output
bits Z defined by � = (�0, �1, . . . , �L). Assume that the jump control sequence
{JCt}∞t=0 is a sequence of independent and identically uniformly distributed
random variables. In our case it is convenient to define the distribution bias
of a binary random variable x as ε = 1 − 2 Pr{x = 1}. Then the following
random binary sequence et =

∑L
i=0 �iz

t+i (t = 0, 1, 2, . . .) has a nonuniform
distribution with the bias ε = F/2L. Indeed, let H denote the event that a
random subsection (JCt, . . . , JCt+L−1) is one of those F that correspond to �.
The complementary event of H is denoted by H . It is clear that Pr{H} = F/2L

and Pr{et = 1 | H} = 0. The probability Pr{et = 1 | H} can be considered equal
to 1/2 because in this case et has a uniform distribution. Therefore, by the rule
of total probability

Pr{et = 1} = Pr{et = 1 | H}Pr{H}+ Pr{et = 1 | H}Pr{H}
= 1/2(1− F/2L) .

For the characteristic polynomial in Pomaranch the LEB is equal to 840 and
ε = 840/214 ≈ 2−4.3.

4.2 Description of the Attack

Firstly, define the following set of sequences

ut
i = et

i ⊕ . . .⊕ et
9 (t ≥ 0, 2 ≤ i ≤ 9) ,

where et
i = zt

i⊕zt+8
i ⊕zt+14

i and zt
i denotes the output from the jump register Ri.

Using this notation, the output sequence of the Pomaranch key-stream generator
satisfies the following relation

rt ⊕ rt+8 ⊕ rt+14 = zt
1 ⊕ zt+8

1 ⊕ zt+14
1 ⊕ ut

2 . (6)

Assume that sequences {et
i}∞t=0 are independent. Then by the Piling-up Lemma,

the random sequence {ut
i}∞t=0 has a nonuniform distribution with the bias ε10−i =

(840/214)10−i for 2 ≤ i ≤ 9.
Equation (6) can be used in a correlation attack to find the correct initial state

of R1. The aim of a correlation attack, first introduced by Siegenthaler in [6],
is finding the initial state of a binary LFSR of length L, given the noisy output
sequence of a Binary Memoryless Symmetric Channel (BMSC) when the output
sequence of the LFSR is applied to the input of this channel. As the first N bits
of the output sequence of an LFSR is a codeword of the corresponding truncated
cyclic linear code of a given LFSR, the problem is essentially a decoding problem.
Siegenthaler solves this problem using Maximum Likelihood (ML) decoding and
computes the minimum required output length of the given noisy sequence,
denoted by N0, needed to successfully find the initial state of the LFSR by
considering a Hypothesis Testing problem.
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However, it is easier to express N0 using the capacity of the corresponding
channel. The ML decoding is performed by searching over all 2L possible initial
states for the LFSR and choosing one that its corresponding output sequence
has the smallest (largest) Hamming distance from the given noisy sequence if the
channel error probability is less (more) than one half. However, the correlation
attack is not limited to LFSR’s and can be applied to any generator with M
different equally probable initial states provided that the output sequences of
different initial states have good statistical properties.

The channel capacity argument shows that the minimum required output
length of the given noisy sequence of the generator is determined by

N0 = log2(M)/C(p) (7)

where p is the error probability and C(p) = 1 + p log2(p) + (1 − p) log2(1 − p)
is the Channel Capacity of the corresponding BMSC. Since the ML decoding is
performed by the exhaustive search over all possible initial states, the required
computational complexity is O(MN0).

The aforementioned discussion on correlation attack shows that the initial
state of R1 (denoted R0

1) in Pomaranch can successfully be found using N0 =
14/C(0.5(1−ε8)) ≈ 273 bits of the key-stream with the computational complexity
214N0 ≈ 287. Note that C(0.5(1− ε)) ≈ ε2/(2ln2) when |ε| � 1.

After finding R0
1, we can eliminate the portion of zt

1 from the output sequence
of Pomaranch. Define the sequence rt

1 as the XOR of rt and zt
1 which is now

available. Then, similarly to (6), we have

rt
1 ⊕ rt+8

1 ⊕ rt+14
1 = zt

2 ⊕ zt+8
2 ⊕ zt+14

2 ⊕ ut
3 . (8)

Since zt
2 depends both on the 14-bit initial state of R2 and 16-bit subkey k1, it

can be considered as an output of a generator with 230 possible output sequences.
Similarly, (8) can be used in a correlation attack to find the correct value of initial
state of R2 and subkey k1. Since the distribution bias of ut

3 is ε7, the required key-
stream length and the computational complexity are N0 = 30/C(0.5(1− ε7)) ≈
265 and 230N0 ≈ 295 respectively.

Alternatively, the 16-bit subkey k1 can be found separately in the following
way. Test all 216 possible values for k1 and, knowing the initial state R0

1 from
the first step of the attack, generate the jump control sequence JCt

2 (t ≥ 0).
Now select only those time instants when the vector (JCt

2, . . . , JC
t+13
2 ) is one

of those 840 that fulfil the LEB relation. Then for these times t automatically
holds zt

2 ⊕ zt+8
2 ⊕ zt+14

2 = 0 and rt
1 ⊕ rt+8

1 ⊕ rt+14
1 = ut

3 which we test to fit
the distribution bias ε7. Therefore, the needed amount of preselected key-stream
bits is equal to N0 = 16/C(0.5(1 − ε7)) ≈ 265. On the average, every 840 bits
out of 214 are selected, thus, the total number of key-stream bits is equal to 269.
The computational complexity of finding k1 is equal to 216269 = 285. Further,
knowing the R0

1 and k1 (so the JCt
2 is known too) we can proceed with R2 exactly

the same way as before when working with R1. The initial state of the remaining
registers and subkeys can be found similarly with a much lower computational
complexity. The total complexity of the attack is dominated by the first step of
finding R0

1.
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In this attack we have only used the basic trinomial relation zt+zt+8+zt+14 =
0. Using the additional relation zt + zt+8 + zt+13 + zt+14 = 0 with the same LES
value allows to halve the required key-stream length. Summarizing the results,
we showed that the secret key of Pomaranch can be found using 272 bits of the
key-stream with the computational complexity O(287). Note that the required
key-stream length can be further reduced if other linear relations present in the
LES are used. Assuming that all 334 relations found in the LES have the same
probability that is defined by the LEB value of 840, we can obtain the lower
bound on the needed amount of key-stream bits that is equal to 273/334 ≈ 264.
The actual value lies somewhere between 264 and 273.

5 Modified Jump Registers for Pomaranch

It is clear that the ideal configuration of a jump register should provide a lowest
possible LEB value. Note that parameter pair (7, 2) with LEB of 567 would have
been a better choice, but even with this configuration our attack recovers the key
with the complexity lower than the exhaustive key search. We conclude that all
the characteristic polynomials having two feedback taps are not secure enough
to counter the attack. Thus, in order to find a characteristic polynomial with a
sufficiently low LEB, the Pomaranch jump register has to be changed to have
three or more feedback taps.

Consider the registers having exactly three taps. Assume there is one tap, the
rightmost, at position n1 with k1 feedback cells among cells 1 to n1. The other
tap is at position n2 > n1, with k2 feedback cells among cells n1 + 1 to n2. The
modified characteristic polynomial now becomes

C(x) = 1 + x
L
2 +k1+k2−n2(x+ 1)

L
2 −k1−k2 + x

L
2 +k1−n1(x+ 1)

L
2 −k1 + x

L
2 (x+ 1)

L
2

for L = 14. The LES of this polynomial contains the basic relation zt+zt+L−n2 +
zt+L−n1 + zt+L = 0.

Searching through all relevant (n1, n2, k1, k2) quadruplets results in a set of
16 primitive S6-set polynomials, amongst which are the five polynomials already
obtained for two taps. The polynomial with the least LEB in this set x14 +x13 +
x12 + x11 + x9 + x7 + x5 + x4 + x2 + x + 1 is obtained for n1 = 4, n2 = 8,
k1 = k2 = 1 and has an LEB equal to 124 and an LES containing 1088 nonzero
values. The linear relation zt + zt+6 + zt+10 + zt+14 = 0 occurs

(
6
1

)
·
(
4
3

)
·
(
4
3

)
= 96

times. Performing a doubling operation on the 6th order term yields a relation
which occurs 124 times that is equal to the LEB value.

Plugging in the bias of 124/214 ≈ 2−7.05 of the jump register in (7) results
in the attack complexity of O(2132) with 2117 bits of the key-stream required.
This complexity exceeds the one of the exhaustive search over the key space
containing 2128 elements. When using all 1088 linear relation found in the LES
the required key-stream length can be reduced but in any case we will need at
least 2118/1088 ≈ 2108 bits.

Note that an alternative way to secure Pomaranch against the described key-
recovery attack is to make the sections have different characteristic polynomials.
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Hereupon each section would have a different most probable linear relation. Thus,
adding the outputs from all the sections will compensate for the bias. However,
keeping all the sections the same definitively looks like a more “elegant” solution.

6 Conclusion

We considered a jump register arrangement that proved to be a powerful and
efficient building block for stream ciphers that use irregular clocking of shift reg-
isters. We have identified a new inherent property of such arrangements which
should always be observed in the relevant types of cipher design. Jump regis-
ters with badly chosen parameters allow building linear relations in the output
sequence with significantly biased distribution.

Using the discovered property, we have built an attack on the Pomaranch
stream cipher that recovers a 128-bit key with the complexity O(287) requiring
less than 272 (but at least 264) bits of the key-stream. This is the first attack
of this type found for this cipher. However, introducing a minor change in the
configuration of the jump register section in Pomaranch gives protection against
this attack bringing its complexity up to O(2132) with less than 2117 (but at
least 2108) bits of the key-stream required that exceeds the complexity of the
exhaustive key search. This was considered in Pomaranch version 2 (see [5]).

Moreover, this new potential weakness can be exploited to attack other stream
ciphers that use irregular clocking. The suggested technique has a general char-
acter and can be dangerous to other clock-controlled arrangements. This issue
will become a focus for our future research.

References

1. Jansen, C.J.A.: Modern stream cipher design: A new view on multiple clocking
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Abstract. In this paper, we propose a simple scheme which produces a
new S-box from a given S-box. We use the well-known conversion tech-
nique between the polynomial functions over F2n and the boolean func-
tions from F

n
2 to F2. We have applied the scheme to Rijndael S-box and

obtained 29 new S-boxes, of which only one is a bijection with better
algebraic expression than the original Rijndael S-box and has the same
spectral properties as the original Rijndael S-box. All others turned out
to be non-bijective, and have different spectral properties, and hence,
they all are inequivalent to the original as boolean functions.

Keywords: Rijndael, AES, S-box, Hadamard transform, Avalanche
transform.

1 Introduction

It is widely known that the properties of substitution box (S-box) are funda-
mental to the secrecy of symmetric encryption algorithms after Shannon [10].
Since S-boxes are usually implemented as look up tables, they are attractive for
fast software encryption algorithms [3]. Most of popular block ciphers and some
of stream ciphers have adopted various S-boxes and a lot of research has been
given to designing “better” S-boxes.

There have been proposed [3] several methods to generate cryptographically
useful S-boxes, such as the selection of nearly optimal (for differential [2] and
linear [9] attacks) boolean functions as components of the S-boxes, random gen-
eration, using finite field operations and heuristic algorithms. Among these, finite
field power operation based S-boxes achieve [3] several security criteria simulta-
neously, and have been used in many cipher proposals including Rijndael [14,15],
major portfolio of NESSIE [19], ARIA [17] in Korea, and CRYPTREC [18] in
Japan, mentioned only a few.

Rijndael was selected as the Advanced Encryption Standard (AES) by the
US NIST in October 2000, and published as FIPS-197 [16] in November 2001.
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Rijndael S-box is the finite field inversion together with a bitwise affine trans-
formation. Until Rijndael was selected as AES, it was generally claimed that
such S-box would prevent algebraic attacks. There have been some progress in
the research of algebraic aspect of Rijndael S-box. It is known [13, 3, 7] that
every component function of Rijndael S-box is a single term trace function on
finite field GF(256), and has a property of algebraic linear redundancy that is
inherent in finite field exponentiation. At the same time, researchers successively
have proposed several improved S-boxes. In [7], the research effort has focused
on the S-boxes with no simple algebraic expression while Fuller and Millan in [3]
concentrates on the S-boxes with no linear redundancy.

This paper is organized as follows. In Section 2, we first introduce some back-
ground materials including one-to-one correspondence between the polynomial
functions over a finite field and the boolean functions. Some definitions which
are frequently used in the cryptanalysis of boolean functions will also be given.
Section 3 describes the design scheme which produces a new S-box from a given
S-box working on 4-bit inputs and outputs. We apply this scheme in Section 4
to Rijndael S-box and obtain 29 new S-boxes, of which only one is a bijection
with better algebraic expression than the original Rijndael S-box and has the
same spectral properties as the original Rijndael S-box. All others turned out
to be non-bijective, and have different spectral properties, and hence, they all
are inequivalent to the original as boolean functions. We give some concluding
remarks and open problems in Section 5.

2 Preliminaries

2.1 Sequences, Trace-Represented Polynomial Functions and
Boolean Functions

Let F2n be a finite field with 2n elements and a = {at}N−1
t=0 be a sequence over F2

of period N = 2n− 1. Let α be a primitive element in F2n . The discrete Fourier
transform (DFT) of a is defined as

Ak =
N−1∑
t=0

atα
−tk, k = 0, 1, · · · , N − 1 .

Its inverse formula is given as follows:

at =
N−1∑
k=0

Akα
kt, t = 0, 1, · · · , N − 1 .

For a given sequence a, there exists a polynomial function f(x) from F2n

to F2, associated with a, such that at = f(αt), t = 0, 1, · · · , N − 1. We write
a ↔ f , and call a as an evaluation of the function f at α. By the inverse DFT
or Lagrange interpolation, we have [5]:
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at = f(x)
∣∣∣∣
x=αt

, t = 0, 1, ...N − 1 ,

=
∑

j∈Γ (N)

Tr
nj

1

(
Ajx

j
) ∣∣∣∣

x=αt

, Aj ∈ F2n ,
(1)

where Γ (N) is the set of cyclotomic coset leaders modulo N with respect to 2,
Cj is the coset which contains j, nj = |Cj |, Trnj

1 (x) is the trace [8] function
from F2nj to F2, and Aj ∈ F2nj is the DFT coefficient of a. Then the sum
of trace functions of (1) is a desired polynomial function and called the trace
representation of sequence a.

Now, let g(xn−1, · · · , x0) be a boolean function in n-variables. By applying the
Lagrange interpolation, its polynomial representation f(x) of g(xn−1, · · · , x0)
can be determined as: (x is just indeterminant)

f(x) =

{
g(0, · · · , 0) x = 0,∑2n−1

j=1 djx
j x ∈ F∗

2n ,
(2)

with coefficient dj , 1 ≤ j ≤ 2n − 1, being

dj =
∑

λ∈F∗
2n

g(xn−1, · · · , x0)λ−j , (3)

where λ =
∑n−1

i=0 xiαi, and {α0, · · · , αn−1} is a basis of F2n over F2, denoted by
F2n = 〈{α0, · · · , αn−1}〉.

A conversion from a polynomial function to a boolean function is given by

g(xn−1, · · · , x0) = f
(
x0α0 + · · ·+ xn−1αn−1

)
, where F2n = 〈{α0, · · · , αn−1}〉 .

(4)
In the rest of this paper, by a boolean function f in n variables, we mean two
notations f(x) = f(xn−1, · · · , x0), x ∈ Fn

2 and f(x), x ∈ F2n interchangeably.

2.2 Transform Domain Analysis Tools

For transform domain analysis of cryptographic functions, see Gong and Golomb
[4], for example. The following definitions are mainly from [5, Ch. 6 and 10] with
the same notation as above. For a ↔ f(x), the Hadamard transform (HT) of a
or f(x) is defined by

f̂(λ) =
∑

x∈F2n

(−1)Tr(λx)+f(x), λ ∈ F2n .

The Walsh transform of a boolean function f(x) is defined by

f̂(w) =
∑
x∈Fn

2

(−1)w·x+f(x), w ∈ F
n
2 .
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The Hadamard transform of f(x) and the Walsh transform of f(x) have the
relation:

f̂(w) = f̂(λ), w ∈ F
n
2 , λ ∈ F2n , where w · x = Tr(λx) .

Nonlinearity Nf of a boolean function f in n variables is defined as

Nf = min
w∈Fn

2 , c∈F2
d
(
f(x),w · x + c

)
,

where d(x,y) denotes the Hamming distance between x and y, and is calculated
using Hadamard transform of f :

Nf = 2n−1 − 1
2

max
w∈Fn

2

∣∣f̂(w)
∣∣

= 2n−1 − 1
2

max
λ∈F2n

∣∣f̂(λ)
∣∣ . (5)

The Avalanche transform (AT) or additive correlation (convolution) of f(x)
is defined by

(f ∗ f)(w) = F (w) =
∑

x∈F2n

(−1)f(x+w)+f(x), w ∈ F2n . (6)

Avalanche transform analysis of cryptographic functions was first introduced
by Webster and Tavares [12]. We say that a boolean function f satisfies Strict
Avalanche Criterion (SAC) if its Avalanche transform F (w) = 0 for all w with
binary hamming weight wt(w) = 1.

2.3 Equivalence Classes of Boolean Functions

Let f and g be two boolean functions in n-variables. If there exist a non-singular
binary matrix D of order n, two n-tuple binary vectors a and b, and a binary
constant c such that for all x ∈ F

n
2

g(x) = f
(
DxT ⊕ aT

)
⊕ b · xT ⊕ c ,

where b · xT = b1x1 ⊕ b2x2 ⊕ · · · ⊕ bnxn denotes a linear function selected by b,
then f and g are said to be (affine) equivalent [3].

The absolute values of the Hadamard transform and the correlation transform
are both re-arranged by affine transform and thus nonlinearity of a boolean
function is unchanged under affine transform [3].

2.4 Description of Rijndael S-Box

An n-bit processing substitution box is a a vector valued boolean function s(x)
from F

n
2 to F

n
2 . If we let s(x) =

(
sn−1(x), · · · , s1(x), s0(x)

)
, then each si(x),
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i = 0, · · · , n − 1, is an ordinary boolean function in n variables and called a
component function or coordinate function of the given S-box. By (4), si(x),
x ∈ Fn

2 can be identified as si(x), x =
∑n−1

i=0 xibi ∈ F2n where {b0, b1, . . . , bn−1}
is a basis of F2n over F2.

We take bi = αi for 0 ≤ i < 8 where α is a root of z8 + z4 + z3 + z1 +1, which
is the defining irreducible (but not primitive) polynomial of F = F28 for the
Rijndael cipher. This transforms eight boolean functions into eight polynomial
functions from F to F2, which are

s0(x) = Tr(β166x−1) + 1 = Tr(β83x127) + 1
s1(x) = Tr(β53x−1) + 1 = Tr(β154x127) + 1
s2(x) = Tr(β36x−1) = Tr(β18x127)
s3(x) = Tr(β11x−1) = Tr(β133x127)
s4(x) = Tr(β72x−1) = Tr(β36x127)
s5(x) = Tr(β76x−1) + 1 = Tr(β38x127) + 1
s6(x) = Tr(β51x−1) + 1 = Tr(β153x127) + 1
s7(x) = Tr(β26x−1) = Tr(β13x127),

(7)

where β = α + 1 is a primitive element of F , and x =
∑7

i=0 xibi ∈ F . The
above algebraic expressions of component functions si(x) have been determined
by Inverse DFT or Lagrange interpolation (2), dual basis approach [13], or q-
polynomial method [7].

3 Proposed Scheme of Designing a New S-Box from a
Given S-Box

We will describe a proposed scheme of designing a new S-box from a given one.
For convenience, we explain using a smaller size example, e.g., over F24 .

Consider the following S-box denoted as SB-0 (the left-most one in Table 1),
defined by s(x) = x−1 over the field F = F24 using the irreducible polynomial
g0(z) = z4 + z3 + z2 + z + 1. Then, the following algorithm produces SB-1 and
SB-2 in the middle and right-most in Table 1, respectively.

Table 1. Three S-boxes (in hexadecimal)

00 01 10 11 00 01 10 11 00 01 10 11

00 0 1 f a 00 0 1 a f 00 0 c 7 0

01 8 6 5 9 01 6 8 5 9 01 6 7 4 7

10 4 7 3 e 10 2 b d c 10 e 2 e 6

11 d c b 2 11 3 e 7 4 11 8 a 5 a

SB-0 SB-1 SB-2
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Polynomial functions for each of the 4 coordinate boolean functions of SB-0
over F can be found using Lagrange interpolation explained in Section 2:

s(x) =
(
s3(x), s2(x), s1(x), s0(x)

)
, or

s(x) =
(
s3(x), s2(x), s1(x), s0(x)

)
=
(
Tr41(β

14x7), T r41(β
7x7), T r41(β

10x7), T r41(β
8x7)
)
, (8)

where x = (x3, x2, x1, x0) is the input to SB-0, x =
∑3

i=0 xibi ∈ F ∼= 〈{bi | bi =
αi, 0 ≤ i < 4}〉, α is a root of g0(z) which is the defining polynomial of F , and
β = 1 + α is a primitive element of F .

Now, we let K be the field defined by g1(z) = z4+z3+1. Then the polynomial
functions of SB-0 over K are determined as

r(x) =
(
r3(x), r2(x), r1(x), r0(x)

)
=

⎛⎜⎜⎝
Tr41(γ10x+ γ12x3 + γ14x7) + Tr21(γ10x5)

Tr41(γ
3x+ γ4x3 + γ5x7) + Tr21(x

5)
Tr41(γ

9x+ γ10x3 + γ13x7) + Tr21(γ
5x5)

Tr41(γ2x+ γ13x3 + γ6x7) + Tr21(γ5x5)

⎞⎟⎟⎠
T

(9)

where x =
∑3

i=0 xici ∈ K ∼= 〈{ci | ci = γi, 0 ≤ i < 4}〉 and γ is a root of g1(z).
To obtain polynomial functions for the new S-box, which we call SB-1, we

simply replace the coefficients (some powers of γ in (9)) with the corresponding
powers of β. This gives new polynomial functions from (9), which are

h3(x) = Tr41(β
10x+ β12x3 + β14x7) + Tr21(β

10x5),

h2(x) = Tr41(β
3x+ β4x3 + β5x7) + Tr21(x

5),

h1(x) = Tr41(β
9x+ β10x3 + β13x7) + Tr21(β

5x5),

h0(x) = Tr41(β
2x+ β13x3 + β6x7) + Tr21(β

5x5).

Finally, to construct SB-1 shown in the middle of Table 1, we evaluate the above
polynomial functions over F = F24 with multiplication mod g0(z).

There is another irreducible polynomial of degree 4 over F2, which is g2(z) =
z4 + z + 1. We denote E by the field defined by g2(z). Then, similarly, over E ,
the polynomial functions of SB-0 are determined as

t(x) =
(
t3(x), t2(x), t1(x) , t0(x)

)
=

⎛⎜⎜⎝
Tr41(δ

2x+ γ9x3 + δ10x7) + Tr21(δ
5x5)

Tr41(δ
4x+ δ12x3 + δ12x7) + Tr21(x

5)
Tr41(δ

6x+ δ2x3 + δ14x7) + Tr21(x
5)

Tr41(δ11x+ δ11x3 + δ2x7) + Tr21(δ10x5)

⎞⎟⎟⎠
T

(10)

where x =
∑3

i=0 xidi ∈ E ∼= 〈{di | di = δi, 0 ≤ i < 4}〉 and δ is a root of g2(z).
By replacing δ in (10) with β, we obtain another set of polynomial functions

from (10):
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u3(x) = Tr41(β
2x+ β9x3 + β10x7) + Tr21(β

5x5),

u2(x) = Tr41(β
4x+ β12x3 + β12x7) + Tr21(x

5),

u1(x) = Tr41(β
6x+ β2x3 + β14x7) + Tr21(x

5),

u0(x) = Tr41(β
11x+ β11x3 + β2x7) + Tr21(β

10x5).

This, in turn, gives a third S-box, SB-2, shown in the right-most of Table 1, when
we evaluate the above polynomial functions over F = F24 with multiplication
mod g0(z).

Remark 1. Observe that SB-1 is a bijection but SB-2 is not. The reason why
they are so different would be a topic of further research.

Remark 2. A simple calculation shows that all three S-boxes in Table 1 have
the same spectral properties. That is, they have the same profiles of Hadamard
transform and Avalanche transform, where the transform is applied to each of
the coordinate boolean functions. It turned out that the spectral properties do
not have to be all the same when this scheme is applied to larger S-boxes, which
we will discuss in the next section.

4 Application of Proposed Scheme to Rijndael S-Box

4.1 Using z8 + z4 + z3 + z2 + 1

We apply the proposed design scheme explained in Section 3 to the original
Rijndael S-box, which we denote by BOX-0. From now on, we use the parallel
notations in Section 3, but g0(z) and g1(z) are changed to:

g0(z) = z8 + z4 + z3 + z1 + 1, and g1(z) = z8 + z4 + z3 + z2 + 1,

where g0(z) is the defining polynomial of F28 for the Rijndael cipher and g1(z)
is a primitive polynomial of degree 8 over F2.

Recall that the polynomial functions si(x), 0 ≤ i < 8, for the coordinate
boolean functions of BOX-0 were determined as in (7) over F = F28 defined by
g0(z), where β = 1 + α is a primitive element of F , where α is a root of g0(z),
and x =

∑7
i=0 xibi ∈ F ∼= 〈{bi|bi = αi, 0 ≤ i < 8}〉.

Now, over K = F28 defined by g1(z), the same boolean functions give some
other polynomial functions ri(x), 0 ≤ i < 8, where, for example,

r7(x) = Tr21(γ
85x85) + Tr41(γ

238x17 + γ34x51 + γ136x119)

+ Tr81(γ
4x1 + γ43x3 + γ60x5 + γ3x7 + γ54x9 + γ155x11)

+ Tr81(γ
86x13 + γ157x15 + γ157x19 + γ48x21 + γ163x23 + γ98x25)

+ Tr81(γ
50x27 + γ92x29 + γ67x31 + γ69x37 + γ181x39 + γ1x43)

+ Tr81(γ
2x45 + γ194x47 + γ110x53 + γ145x55 + γ105x59γ246x61)

+ Tr81(γ
192x63 + γ45x87 + γ20x91 + γ160x95 + γ144x111 + γ13x127) ,

(11)
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Table 2. Polynomial functions ri’s of BOX-0 over K (hi’s of BOX-1 over F)

k nk r7 r6 r5 r4 r3 r2 r1 r0

const. − 1 1 − − − 1 1

85 2 85 0 170 0 170 170 0 85
17 4 238 0 102 136 136 68 17 119
51 4 34 102 238 17 85 17 17 85
119 4 136 0 187 85 0 ∞ 187 51
1 8 4 129 65 213 52 83 14 127
3 8 43 251 43 12 233 23 174 30
5 8 60 163 162 197 79 57 166 24
7 8 3 19 50 233 134 193 246 119
9 8 54 221 120 97 33 139 159 33
11 8 155 31 242 163 92 ∞ 2 226
13 8 86 80 199 91 17 151 208 153
15 8 157 143 74 56 242 41 86 214
19 8 157 ∞ 231 16 99 148 65 251
21 8 48 28 69 3 190 33 106 136
23 8 163 48 100 173 16 198 248 120
25 8 98 78 37 9 197 242 225 72
27 8 50 29 25 115 16 157 189 167
29 8 92 74 21 220 162 25 71 174
31 8 67 49 69 157 233 130 107 35
37 8 69 253 52 155 32 6 219 230
39 8 181 145 68 145 114 121 12 91
43 8 1 125 168 228 244 242 217 58
45 8 2 253 127 200 25 64 133 164
47 8 194 246 233 173 43 102 108 119
53 8 110 23 129 77 16 133 245 136
55 8 145 173 74 35 6 143 159 64
59 8 105 65 121 186 228 90 182 108
61 8 246 176 111 176 17 161 213 100
63 8 192 252 141 80 142 81 213 178
87 8 45 7 157 61 230 6 98 78
91 8 20 239 73 76 251 20 123 94
95 8 160 236 186 66 236 222 156 248
111 8 144 41 149 35 167 32 154 210
127 8 13 141 14 91 90 220 166 71

LS 254 247 255 254 254 242 255 255

where γ is a root of g1(z) in this section, and is a primitive element of K. For
the other ri(x), see Table 2.

The first and second column of Table 2 represents cyclotomic coset leaders
and sizes, respectively. The values in the third column are the exponents of the
coefficients of xk in the trace representation of r7(x), with the convention of
γ∞ = 0, where γ is a primitive element in K. The bottom row of Table 2 shows
the number of nonzero terms in each ri(x). Note that these values are very large
(255 is the maximum) compared to that of the expression in (7).
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By replacing the coefficients (which are the powers of γ in (11)) with the
corresponding powers of β, as described in Section 3, we obtain a set of 8 new
polynomial functions hi(x), 0 ≤ i < 8, one of which is

h7(x) = Tr21(β
85x85) + Tr41(β

238x17 + β34x51 + β136x119)

+ Tr81(β
4x1 + β43x3 + β60x5 + β3x7 + β54x9 + β155x11)

+ Tr81(β
86x13 + β157x15 + β157x19 + β48x21 + β163x23 + β98x25)

+ Tr81(β
50x27 + β92x29 + β67x31 + β69x37 + β181x39 + β1x43)

+ Tr81(β
2x45 + β194x47 + β110x53 + β145x55 + β105x59 + β246x61)

+ Tr81(β
192x63 + β45x87 + β20x91 + β160x95 + β144x111 + β13x127),

(12)

where β = 1 + α is the primitive element of F , where α is a root of g0(z). Now,
evaluating these polynomials over F = F28 with multiplication mod g0(z) gives
a new S-box, BOX-1, shown in Table 3.

Table 3. BOX-1 (in hexadecimal)

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 7b 77 6b f2 6f c5 76 ab fe d7 67 2b 01 30

1 82 ca c9 7d fa 59 f0 47 72 c0 a4 9c af a2 ad d4

2 c3 23 04 c7 05 9a 96 18 eb 27 75 b2 12 07 80 e2

3 93 26 fd b7 cc f7 36 3f d8 71 31 15 34 a5 f1 e5

4 fc 20 b1 5b 53 d1 ed 00 be 39 cb 6a cf 58 4a 4c

5 1b 6e a0 5a 83 09 2c 1a b3 d6 52 3b 2f 84 e3 29

6 33 85 4d 43 fb aa d0 ef f9 45 02 7f 50 3c a8 9f

7 f5 38 92 9d 40 8f a3 51 bc b6 21 da ff 10 f3 d2

8 16 bb b0 54 2d 0f 99 41 8c a1 0d 89 e6 bf 42 68

9 28 df 55 ce e9 87 9b 1e f8 e1 98 11 69 d9 94 8e

a 4b bd 8a 8b dd e8 74 1f 2e 25 ba 78 b4 c6 a6 1c

b c1 86 1d 9e 61 35 b9 57 b5 66 3e 70 0e f6 48 03

c ac 62 d3 c2 79 e4 91 95 06 49 24 5c e0 32 0a 3a

d ea f4 6c 56 ae 08 7a 65 8d d5 a9 4e c8 e7 37 6d

e ee 46 b8 14 de 5e db 0b 90 88 2a 22 dc 4f 60 81

f c4 a7 3d 7e 5d 64 19 73 17 44 5f 97 13 ec 0c cd

We now list some cryptographic properties of BOX-1 in parallel with those of
BOX-0. We will use hi(x) in Table 2 for BOX-1 and si(x) in (7) for BOX-0.

1. BOX-1 is a bijective map. So is BOX-0.
2. The component boolean functions of BOX-1 are balanced. So is BOX-0.
3. It is not difficult to show that the highest degree in its algebraic normal

form (ANF) of a boolean function f is the maximum binary Hamming weight
wt(k) as k runs through all the exponents in the trace representation of f [5].
For k = 127, wt(k) = 7 and every coordinate function hi(x), i = 0, · · · , 7,
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has the term θx127 in its trace representation for some nonzero θ ∈ F∗
2n .

The ANF of any boolean function can be found by exhaustive “truth table
summation” [11]. In fact, the number of linear and highest degree terms in
the ANF of hi(x) and si(x) turns out to be given as follows:

h0 h1 h2 h3 h4 h5 h6 h7 s0 s1 s2 s3 s4 s5 s6 s7

Number of linear terms 4 3 4 4 6 3 3 3 6 4 6 4 6 2 4 4

Number of degree 7 terms 4 4 5 1 5 4 3 3 5 4 2 4 2 3 4 4

4. Since the linear span of a function or a sequence is just the number of nonzero
terms in its polynomial function [5], we have:

h0 h1 h2 h3 h4 h5 h6 h7 s0 s1 s2 s3 s4 s5 s6 s7

Linear span 255 255 242 254 254 255 247 254 9 9 8 8 8 9 9 8

5. Hadamard transform of a boolean function has a connection (5) with nonlin-
earity and with the first-order correlation immunity [11]. Hadamard trans-
form profile of component functions of BOX-1 and BOX-0 are determined
as:

Absolute HT value 0 4 8 12 16 20 24 28 32 Total

hi for all 0 ≤ i < 8 17 48 36 40 34 24 36 16 5 256

si for all 0 ≤ i < 8 17 48 36 40 34 24 36 16 5 256

6. From the above calculation, it is easy to see that nonlinearity of every co-
ordinate function of BOX-1 is 112, which is the same as that of BOX-0, the
original Rijndael S-box.

7. The frequency distribution of Avalanche (additive correlation) transform of
each component function of BOX-1 and BOX-0 is determined as:

Absolute AT value 0 8 16 24 32 Total

hi for all 0 ≤ i < 8 32 84 74 52 13 255

si for all 0 ≤ i < 8 32 84 74 52 13 255

8. It is interesting to observe that for all i = 0, 1, · · · , 7, hi and si have the
same Hadamard and Avalanche transform spectrum (as a profile), which is
not an accident due to the following theorem.

Theorem 1. Let Γ = {s0, s1, · · · , s7, h0, h1, · · · , h7} be the set consisting of
all the component functions of BOX-0 and BOX-1. Then any two boolean
functions in Γ are pairwise equivalent.

Proof. Since si(x) = Tr(θix
−1) + ei for some θi ∈ F28 , i = 0, · · · , 7, and ei

is either 1 or 0 as shown in (7), it is easily shown [3, Theorem 3] that si and
sj are equivalent for any 0 ≤ i, j ≤ 7.

Now it is enough to establish the affine equivalence between s0 and hi for
all i = 0, 1, · · · , 7. Some calculation shows that h0(x) = s0(D0xT ), where
binary 8× 8 square matrix D0 is given as

D0 = [ 11d 148d 182d 82d 224d 8d 105d 31d ] ,
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where the first column 11d is the decimal form of [00001011]T . Similarly, for
i = 1, 2, · · · , 7, we have hi(x) = s0(DixT ) + ci, where

D1 = [ 51d 150d 235d 156d 223d 77d 28d 1d ]
D2 = [ 47d 78d 142d 86d 149d 164d 62d 240d ]
D3 = [ 35d 112d 68d 4d 213d 186d 121d 129d ]
D4 = [ 26d 94d 156d 1d 172d 55d 85d 124d ]
D5 = [ 42d 101d 4d 220d 237d 35d 247d 191d ]
D6 = [ 47d 90d 18d 241d 151d 137d 143d 122d ]
D7 = [ 67d 146d 81d 29d 161d 199d 246d 61d ]

,

and constant ci is given by c2 = c3 = c4 = c7 = 1 and c1 = c5 = c6 = 0. �

9. Finally, we check SAC for BOX-1 and BOX-0.
00000001 00000010 00000100 00001000 00010000 00100000 01000000 10000000

h7 0 -16 -8 -24 -32 -8 16 8

h6 24 -16 8 -8 8 -24 16 -32

h5 8 16 24 24 24 -8 -16 -8

h4 24 -8 -16 -8 32 0 24 16

h3 -32 16 24 -16 8 -8 16 -16

h2 24 -16 32 24 -16 0 0 -8

h1 -8 0 24 -16 8 -8 8 -24

h0 -8 16 24 -8 -8 0 16 0

s7 -8 16 -8 -16 24 24 -16 -8

s6 -8 8 -8 -16 0 -8 -16 -32

s5 24 -32 0 16 24 -8 16 -8

s4 -32 0 16 24 -8 16 -8 -16

s3 24 8 -32 0 0 16 16 8

s2 8 24 0 -16 0 -24 -16 -16

s1 24 0 -16 0 -24 -16 -16 8

s0 0 -16 0 -24 -16 -16 8 -8

Since an affine transformation rearranges additive correlation values, the
Avalanche transform of hi is possibly non-identical to that of si. However, for
w ∈ F

8
2 with binary Hamming weight one, the maximum absolute correlation

value of (hi ∗ hi)(w) is equal to that of (sj ∗ sj)(w) for 0 ≤ i, j ≤ 7, and the
frequency of occurrences of each possible values of both BOX-1 and BOX-0
are very similar. Therefore, BOX-1 and BOX-0 have almost the same level
of performance in correlation aspect.

4.2 Using All Other Irreducible Polynomials of Degree 8

Analysis result of BOX-1, especially the items from 4 to 7 in the above list, and
Theorem 1, shows that BOX-1 is equivalent to the original S-box of Rijndael in
many aspects.

The effect of replacing the irreducible polynomial in Rijndael has been enough
studied previously. Any replacement of irreducible polynomial in Rijndael cipher
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with different one can create a new cipher, but it is equivalent to the original
in all aspects. Barkan and Biham [1] concluded that the arbitrary choice for the
irreducible polynomial to be replaced works the same always, and hence, there
is no advantage to changing the original irreducible polynomial with any other.
Careless conclusion from the above information would lead to a guess that the
remaining S-boxes, BOX-2, ... , BOX-29, using each of the remaining irreducible
polynomials of degree 8, respectively, would have the similar properties. That is,
every BOX-i for 2 ≤ i ≤ 29 might be a balanced bijection with the same spectral
properties (the same Hadamard and correlation transform profile) and whose
coordinate functions would be all affine equivalent to that of Rijndael S-box. To
our surprise, it turned out that this is not the case. Careful examination of the
proposed scheme described in Section 3 will reveal that our scheme is completely
different from simply changing the irreducible polynomial in Rijndael cipher.
Instead, it is a method of constructing only a new S-box from the given one, and
the whole cipher runs over the field defined by the same irreducible polynomial.

For example, we examine BOX-2, which is constructed using the irreducible
polynomial g2(z) = z8 + z5 + z3 + z1 +1 in the conversion process. Again we use
the parallel notations with Section 3, but in this case, we use the field E defined
by g2(z). BOX-2 is shown in Table 4. The polynomial functions for BOX-2 are
denoted by ui(x), their Hadamard transform profiles and SAC table are given
in Table 5 and Table 6, respectively.

In summary, BOX-2 is completely different from BOX-1 or BOX-0:

1. BOX-2 is not bijective and no coordinate function is balanced. Therefore, it
is worse against the linear attack than BOX-0.

Table 4. BOX-2 (in hexadecimal)

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 12 31 1d f9 50 e6 22 4f 2f 2e e8 18 f1 03 08

1 4a eb 84 c2 b9 90 34 d4 02 b6 61 6c ea 29 46 2b

2 cd d3 c7 f2 2f 34 9e d4 c3 14 b3 56 7b 9d d0 58

3 ff d4 7e 82 85 55 90 88 21 ba af 23 b2 aa ba 49

4 1e ac 27 2f 94 cb 0c eb 7f c3 9f b1 53 2b 19 d2

5 78 2e dd ca c3 18 a3 51 12 31 22 6e 2d 59 87 da

6 4a ec f2 a7 a8 1e 1b 33 5e 60 94 f5 07 f4 6d ac

7 9b 01 64 55 93 d9 80 1c 2b de 98 78 42 eb 65 c5

8 3f 56 f3 dc e1 18 f0 db 59 e7 ab cc fa 3d 89 18

9 a8 3c 62 8b 70 55 7c 7a 0d aa c7 4c 9e d4 bf 00

a e7 48 50 7c 48 9b 89 72 cb c4 a5 40 05 b1 00 fc

b 4a b4 ac 85 bb 62 98 22 6d b4 e4 b7 ac 30 d0 70

c ce 09 bb e8 ef 11 e6 f8 3a 14 ac 7c 75 29 c1 79

d 1b ff 9c 31 49 7b 5a 57 cb b6 d0 3e b9 48 47 c8

e 1d 02 eb 7d d7 df 31 3f 72 9c a3 91 b5 75 c9 08

f 38 06 a4 b9 2d f6 20 99 3a 9b 5e 6e 7e 36 58 14
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Table 5. Hadamard transform profile (frequency distribution) of BOX-2

Absolute HT value 0 4 8 12 16 20 24 28 32 36 40 44 48 52 Total

u7 27 59 45 28 21 30 25 7 5 4 2 0 3 0 256
u6 26 45 46 42 31 22 17 13 6 4 1 2 1 0 256
u5 22 55 42 38 32 23 18 8 10 3 4 1 0 0 256
u4 25 45 38 33 42 31 15 17 5 2 3 0 0 0 256
u3 23 46 44 46 34 25 16 7 5 3 4 1 2 0 256
u2 33 53 38 32 33 22 15 15 5 6 3 0 1 0 256
u1 22 55 40 39 35 21 21 10 6 1 3 1 1 1 256
u0 30 44 47 41 29 20 15 16 4 6 2 1 1 0 256

Table 6. Check for SAC of BOX-2

10000000 01000000 00100000 00010000 00001000 00000100 00000010 00000001

u7 -8 8 -8 -24 0 -8 8 -24
u6 16 24 -24 -24 0 -24 0 8
u5 40 24 8 -8 -8 0 -8 -24
u4 24 -32 16 0 8 0 56 8
u3 24 16 -24 8 -8 8 24 -32
u2 -8 8 -8 -8 -24 -8 24 0
u1 0 8 8 32 16 -8 16 16
u0 40 16 24 -16 0 16 -8 0

2. BOX-2 has worse spectrum in transform domain than BOX-0.
3. The Hadamard transform profiles of the eight component functions of BOX-2

are all distinct.
4. All coordinate functions of BOX-2 are pairwise inequivalent as boolean func-

tions, which is one of the desirable characteristics of an S-box.
5. None of the component functions of BOX-2 has a simple algebraic expression

over F2n with the multiplication performed modulo any irreducible polyno-
mial, while all coordinates of BOX-0 do have the simplest equations such as
(7) with the current Rijndael irreducible polynomial. Therefore, BOX-2 is
better against the interpolation attack [6] than the original S-box, BOX-0.

We have experimentally checked all the remaining 27 S-boxes which are con-
structed from Rijndael S-box using the remaining 27 irreducible polynomials of
degree 8, respectively. We have verified that all these share almost the same
properties listed above with BOX-2.

5 Concluding Remarks

We proposed a simple scheme which produces a new S-box from the given S-box,
which are based on operations over F2n . The essential steps of the construction
are (i) to determine the trace-represented polynomial functions of the given S-box
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over F2n with the multiplication performed modulo some other irreducible poly-
nomial than the one originally used, (ii) to replace the coefficients in the trace-
represented polynomial functions with the corresponding powers of the original
primitive element, and finally, (iii) to evaluate new polynomials in F2n with the
multiplication now performed modulo the original irreducible polynomial.

We have applied the scheme to Rijndael S-box, BOX-0, and constructed
29 different S-boxes, denoted by BOX-1, BOX-2, ... , BOX-29. All 29 S-boxes
have much improved algebraic expressions over F2n with the multiplication per-
formed modulo the original irreducible polynomial g0(z) (compare with (7)).
Only BOX-1 has almost the same cryptographic properties as BOX-0. It is be-
cause only BOX-1 is equivalent to BOX-0 as boolean functions. Only BOX-0 and
BOX-1 have the property that the algebraic expressions over F2n with the mul-
tiplication performed modulo some appropriate irreducible polynomial turned
out to consist of a single trace function. No other S-boxes have such a simple
algebraic expression.

Some theoretical developments that would be interesting are the following:

Q1 When and why the resulting S-box is a bijection or not a bijection?
Q2 When and why the resulting S-box has the same or different spectral prop-

erties as the original S-box?
Q3 Restricting to the case of Rijndael S-box, why is only BOX-1 similar to the

original S-box? This is very surprising considering that g1(z) is an arbitrary
choice among 29 irreducible polynomials of degree 8 over F2.

Q4 What are the distinctive properties of g1(z) = z8 + z4 + z3 + z2 +1 relative
to g0(z) = z8 + z4 + z3 + z1 + 1 compared with all other 28 irreducible
polynomials of degree 8 over F2?
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Abstract. The nonlinear complexity of binary sequences is studied in
this paper. A new recursive algorithm is presented, which produces the
minimal nonlinear feedback shift register of a given sequence. Further,
a connection between the nonlinear complexity and the compression ca-
pability of a sequence is established. A lower bound for the Lempel-Ziv
compression ratio that a given sequence can achieve is proved, which
depends on its nonlinear complexity.

Keywords: Cryptography, Lempel-Ziv compression, nonlinear comple-
xity, nonlinear feedback shift registers, sequences.

1 Introduction

Binary sequences have a significant role in many applications, amongst others er-
ror control coding, spread spectrum communications and cryptography [3,5,14].
In particular, the security of cryptographic systems is strongly contingent on
the unpredictability or pseudorandomness of the key streams [14]. Depending
on the cryptographic system, a sequence is required to admit many properties
in order to be considered as pseudorandom. The nonlinear complexity c(y) of
a sequence y, also called maximum order complexity or simply complexity, is
an important cryptographic measure; it is defined as the length of the shortest
feedback shift register (FSR) that generates y. For linear feedback shift registers
(LFSRs), the corresponding complexity measure is referred to as linear complex-
ity or linear span of y. The computation of the minimal LFSR that generates
y is efficiently solved by the Berlekamp-Massey algorithm (BMA) [1,11]. Lin-
ear complexity has been widely studied in the literature using many different
approaches [6,8,12,13,18].

On the contrary, the general case of nonlinear complexity has not been studied
that extensively. In [4] a directed acyclic graph is used to exhibit the complexity
profile of any sequence with values in arbitrary field. In [2] an approximate propa-
bility distribution for the nonlinear complexity of a random binary sequence is
derived. Recent results are provided in [16], where the minimal nonlinear FSR
that generates a given sequence is computed via an algorithmic approach. In [17]
the special case of a quadratic feedback function of the FSR is treated.
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The degree to which a given sequence can be compressed constitutes another
important cryptographic measure. Clearly, a sequence can not be considered as
pseudorandom if it can be significantly compressed. In this direction, a com-
plexity measure related to the number of cumulatively distinct patterns in the
sequence is proposed in [9]. Generalization of this procedure resulted in the
prominent Lempel-Ziv compression algorithm, namely versions LZ77 and LZ78
proposed in [21] and [22] respectively. They are both asymptotically optimal,
since the compression ratio approaches the source entropy for all finite-alphabet
stationary ergodic sources [20,22]. However, the compression ratio for a finite
sequence can be far from optimal.

The relationship between several of the currently established cryptographic
criteria still remains an open problem. In this paper we focus on the connection
between the nonlinear and Lempel-Ziv complexity, motivated by a statement of
Niederreiter indicating this connection as an interesting open problem [15]. For
any periodic sequence, we establish the dependence of the minimum achievable
compression ratio on its nonlinear complexity. Furthermore, a new recursive al-
gorithm producing the minimal FSR of any binary sequence is developed, thus
generalizing the Berlekamp-Massey algorithm to the nonlinear case. This algo-
rithm differs from the one proposed in [16] since it recursively computes the min-
imal FSR for any subsequence by utilizing special Boolean algebra arguments.

The paper is organized as follows: in Section 2 the basic terminology and
definitions are introduced. Properties on the nonlinear complexity of sequences
over any field are presented in Section 3. Based on these properties, a recursive
algorithm that computes the minimal FSR of any binary sequence is derived
in Section 4. The connection between the nonlinear complexity and Lempel-Ziv
compression ratio is established in Section 5. Finally, concluding remarks are
given in Section 6.

2 Preliminaries

Let F2 denote the binary field. A boolean function f with n variables is a
mapping f : Fn

2 → F2. The complement of a binary variable x is denoted by
x′ = x⊕ 1, where ⊕ represents the addition modulo 2. Let x1, x2, . . . , xn be bi-
nary variables. Then, a product that contains each of variables xi, i = 1, 2, . . . , n,
in either complemented or uncomplemented form is referred to as minterm
[7]. Clearly, there are 2n minterms. The minterm corresponding to the n-tuple
c = (c1, c2, . . . , cn) ∈ F

n
2 is uniquely determined by the property that it evalu-

ates to 1 if the i-th variable of the minterm is replaced by ci. For example, the
minterm of the 5-tuple 00101 is x′1x′2x3x

′
4x5, since 0′ ·0′ ·1 ·0′ ·1 = 1 and, clearly,

no other minterm satisfies this property.
There are several ways to represent a boolean function. The algebraic normal

form (ANF) of f is identified via the relation:

f(x1, x2, . . . xn) =
∑
j∈Fn

2

ajx
j1
1 x

j2
2 · · ·xjn

n , aj ∈ F2 (1)
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where j = (j1, j2, . . . , jn) and the summation is taken modulo 2. A more general
representation of a boolean function, the so-called exclusive-or sum-of-products
(ESOP), occurs if the variables in (1) are in either complemented or uncomple-
mented form [19].

Let y = y0 y1 y2 . . . be a sequence over F2 and denote by yj
i , with i ≤ j, the

tuple (yi, yi+1, . . . , yj). If y has finite length N , then clearly yN � yN−1
0 denotes

the whole sequence. If there exist t0 ≥ 0 and T > 0 such that yi = yi+T for
all i ≥ t0 then sequence is called ultimately periodic. More precisely, if t0 = 0
the sequence is simply periodic. The least integers t0, T with this property are
called preperiod and period respectively. Any ultimately periodic sequence can
be generated by a feedback shift register, satisfying a recurring relation of the
form

yi+n = h(yi+n−1, . . . , yi), i ≥ 0

where the n-tuple (yi+n−1, . . . , yi) is the state of the FSR at time i, and n > 0
determines the number of stages of the FSR [3,5,10]. The function h is called
the feedback function of the FSR. If n = c(yN ), then the FSR and h are called
the minimal FSR and minimal nonlinear polynomial of sequence y respectively.
Clearly, the minimal FSR of any sequence is not necessarily unique. In the sequel,
for any feedback function h of a FSR we assume that the constant term of its
ANF is zero. For any m > 0, the (N −m+1)×m state matrix Sm of yN equals

Sm(yN ) =

⎛⎜⎜⎜⎝
ym−1 ym−2 . . . y1 y0

ym ym−1 . . . y2 y1

...
...

...
...

...
yN−1 yN−2 . . . yN−m+1 yN−m

⎞⎟⎟⎟⎠ . (2)

Clearly, if an m-stage FSR produces yN , the rows of Sm(yN ) coincide with the
states of the FSR. Furthermore, Sm(yN ) is a Toeplitz matrix. The j-th row of
Sm is denoted by Sm

j (yN ), j = 1, 2, . . . , N −m+ 1.

3 Properties of Nonlinear Complexity

In this section we present some of the properties characterizing the nonlinear
complexity of finite-length sequences.

Proposition 1 ([4]). Let L be the length of the longest tuple in yN that occurs
at least twice with different successors. Then, c(yN) = L+ 1.

In fact, Proposition 1 is valid in the case of a nonzero constant term in the
feedback function of the FSR is nonzero. If we are confined to a zero constant
term, then

c(yN ) = max{L+ 1,M + 1}

where L is the integer referred to in Proposition 1, and M is the length of the
longest run of zeros in yN followed by 1. Clearly, M ≤ L+ 1.
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Proposition 2. Consider a minimal FSR of yN−1 with length m, which does
not produce yN . Then c(yN ) = m if and only if

yN−2
N−m−1 = (yN−m−1, yN−m, . . . , yN−2)

appears only once within yN−1.

Proof. Let c(yN ) = m and assume that there exists 0 ≤ i < N − m − 1 such
that yi+m−1

i = yN−2
N−m−1. Clearly, since the FSR does not produce the N -th

element of yN , we have yi+m 
= yN−1, and Proposition 1 gives c(yN ) ≥ m+ 1 –
a contradiction.

Conversely, let yN−2
N−m−1 appear only once. Note that since c(yN−1) = m, it

clearly holds c(yN ) ≥ m. Let us suppose that c(yN ) = m + k, k ≥ 1. Then,
from Proposition 1 there exist at least two identical tuples within yN , each of
length m + k − 1, with different successors. That is there exist 0 ≤ i1 < i2 ≤
N−m−k such that yi1+m+k−2

i1
= yi2+m+k−2

i2
and yi1+m+k−1 
= yi2+m+k−1. Since

c(yN−1) = m, such pair of (m+ k− 1)-tuples is not present in yN−1, leading to
i2 = N −m− k. Hence, the tuple determined by the last m+ k − 1 elements of
yN−1 is present twice within yN−1, contradicting our hypothesis. ��
Proposition 2 and the structure of Sm(yN ) lead to the following result.

Corollary 3. Let yN be a finite-length sequence with c(yN−1) = m. Then c(yN)
> m if and only if there exists i < N−m such that it holds Sm

i (yN ) = Sm
N−m(yN)

and Sm
i+1(y

N ) 
= Sm
N−m+1(y

N ).

The above result indicates that the state matrix Sm can be utilized for deter-
mining the increment j = c(yN )− c(yN−1) or jump in the complexity. The exact
value of j is given by the following theorem.

Theorem 4. Let yN be a finite-length sequence with c(yN−1) = m and c(yN ) >
m. Further, let K = {k1, k2, . . . , k�} be the set of integers with

Sm
ki

(yN ) = Sm
N−m(yN ), i = 1, 2, . . . , �

where 1 ≤ k1 < k2 < . . . < k� < N −m. Then c(yN ) = m + j, where j is the
largest integer such that for all 0 ≤ i < j we have

Sm
N−m−i(y

N−1) = Sm
k�−i(y

N−1) . (3)

Proof. Corollary 3 implies that K is a non-empty set and Sm
N−m+1(y

N ) 
=
Sm

k�+1(y
N ). It is easy to verify that for all i < j, we have

Sm+i
N−m−i(y

N ) = Sm+i
k�−i(y

N ) and Sm+i
N−m−i+1(y

N ) 
= Sm+i
k�−i+1(y

N ) .

Hence, Corollary 3 gives c(yN ) ≥ m + j. We shall prove that all the rows of
Sm+j(yN ) are pairwise distinct, thus obtaining c(yN ) = m+ j from Proposition
1. The claim is straightforward for Sm+j(yN−1) from the definition of j and
the fact that c(yN−1) = m. Furthermore, the last m + 1 elements of yN are
present only once within yN since c(yN ) > m. Therefore, none of the rows of
Sm+j(yN−1) coincides with the last row Sm+j

N−m−j+1(y
N ) containing these m+ 1

elements, thus concluding our proof. ��



172 K. Limniotis, N. Kolokotronis, and N. Kalouptsidis

If c(yi−1) = m and c(yi) > m for some integer i, then Corollary 3 implies
that there exist t0S ≥ 0 and TS > 0 such that Sm

� (yi−1) = Sm
�+TS

(yi−1) for
all t0S < � ≤ i − m − TS . Thus there exist 1 ≤ λ ≤ TS and k ≥ 1 satisfying
t0S + kTS + λ = i − m. Clearly, the jump j in the complexity according to
Theorem 4 is given by j = (k − 1)TS + λ, or equivalently

j = i−m− TS − t0S . (4)

Proposition 5. Let yN be a finite-length sequence with c(yN−1) = m and
c(yN ) = m + j for some j ≥ 1. If yN is expanded arbitrarily by j elements,
then the complexity of the expanded sequence yN+j remains m+ j.

Proof. From the proof of Theorem 4, the matrix Sm+j(yN ) has pairwise dis-
tinct rows and the last (m + 1)-tuple of yN , that is yN−1

N−1−m, is present only
once within yN . Let ŷN−1

N−1−m = (yN−1, yN−2, . . . , yN−1−m) be the reversed tu-
ple of yN−1

N−1−m. Then, among the rows of Sm+j(yN ), only the last row contains
ŷN−1

N−1−m. Clearly, ŷN−1
N−1−m also lies in the last j rows of Sm+j(yN+j) due to

its Toeplitz structure. Hence, the last j rows of Sm+j(yN+j) are pairwise dis-
tinct and, moreover, they are distinct from any of the previous rows. Subse-
quently, all the rows of Sm+j(yN+j) are pairwise distinct, leading to c(yN+j)
= m+ j. ��

The above analysis is independent from the underlying field of the sequence. In
the sequel we restrict our attention on binary sequences.

4 An Algorithm for Nonlinear Shift Register Synthesis

Let us consider a binary sequence yN such that c(yi−1) = m for some i < N and
let h be the minimal nonlinear polynomial of yi−1. Furthermore, let us suppose
that the next bit yi−1 satisfies

h(yi−2, yi−3, . . . , yi−m−1) = yi−1 (5)

Then, the same FSR produces yi and clearly c(yi) = c(yi−1) = m. On the
other hand, if (5) does not hold, we say that a discrepancy occurs. In this case,
the minimal FSR of yi is not known. Due to Proposition 2, if yi−2

i−m−1 appears
only once within yi−1 the complexity does not increase; otherwise c(yi) > m.
Next, these two cases where a discrepancy occurs are treated separately, in order
to obtain a minimal FSR of yi for each case.

Case 1: c(yi) = c(yi−1). Consider the function h′ = h + f δ where f δ is a
function on m variables that equals 1 when evaluated at the last row of Sm(yi−1)
and 0 otherwise. That is f δ is the minterm corresponding to the last row of
Sm(yi−1). Clearly, h′ suffices to generate yi and thus is a minimal nonlinear
polynomial of yi.
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Algorithm 1 Computation of the minimal FSR of a sequence yN

1: r := 1 {Start of initialization procedure}
2: while yr = y0 do
3: r := r + 1
4: end while
5: if yr = 0 then
6: m := r
7: else
8: m := r + 1
9: end if

10: h := 0 {End of initialization procedure}
11: for i := r + 1 to N − 1 do
12: � = (yi−1 yi−2 . . . yi−m)
13: if � = (0 0 . . . 0) then
14: m := m + 1
15: � = (yi−1 yi−2 . . . yi−m)
16: end if
17: if h(�) 
= yi then
18: if � is appeared once in yi then
19: Set f δ(x) equal to the minterm that corresponds to �
20: h := h + f δ

21: else
22: Compute the jump j of complexity
23: m := m + j
24: � = (yi−1 yi−2 . . . yi−m)
25: Set f δ equal to the minterm that corresponds to �
26: h := h + f δ

27: end if
28: end if
29: end for
30: c(yN) := m
31: The feedback polynomial of a minimal FSR of yN is h

Fig. 1. Algorithm for nonlinear shift register synthesis

Case 2: c(yi) > c(yi−1). Recall that the exact jump j in the complexity is
given by (4). Furthermore, note that the FSR of length m+ j with feedback
function h also generates yi−1 if its initial load is the first m + j elements
of yN . By using the same arguments as above, it is easy to verify that the
FSR with feedback function h′ = h+f δ generates yi, where f δ is the minterm
corresponding to the last row of Sm+j(yi−1). Hence, h′ is a minimal nonlinear
polynomial of yi.

Combining the above cases, we conclude that if a feedback function h gener-
ates yi−1 but not yi, there always exists a function f δ such that h′ = h + f δ

produces yi. Any f δ with this property is determined via its unique association
with a minterm. Hence, the previous analysis settles the basis to construct a
recursive algorithm for computing the minimal nonlinear polynomial of any bi-
nary sequence yN . This algorithm also determines a minimal FSR of yi, for any
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current state i yi d t0S
, TS f δ next state

100 3 1 1 0,0 x1x
′
2x

′
3 110

110 4 0 0 0,0 0 011

011 5 1 1 0,0 x′1x2x3 101

101 6 1 1 0,0 x1x
′
2x3 110

110 7 1 1 1,3 x1x2x
′
3x4 1110

1110 8 0 0 0,0 0 0111

0111 9 0 1 0,0 x′1x2x3x4 0011

0011 10 1 1 0,0 x′1x′2x3x4 1001

1001 11 0 1 0,0 x1x
′
2x

′
3x4 0100

0100 12 1 1 0,0 x′1x2x
′
3x

′
4 1010

1010 13 1 0 0,0 0 1101

1101 14 1 0 3,7 0 1110

1110 15 0 0 3,7 0 0111

0111 16 1 1 3,7 x′1x2x3x4x
′
5x6x

′
7 1011101

1011101 17 1 0 0,0 0 1101110

Fig. 2. An example of the computation of the minimal FSR of y18

i ≤ N , and is depicted in Figure 1. Line 22 of the algorithm computes the jump
j in the complexity according to (4). Note that t0S and TS are estimated in line
18 while seeking for repetitions of tuples within the sequence; clearly, this step
has linear computational complexity. Furthermore, according to Proposition 5,
if c(yi)− c(yi−1) = j then the next j bits of the sequence do not cause jump in
the complexity and, thus no need arises to search for repetitions at the next j
iterations. Finally, note that the minimal nonlinear polynomial h computed by
the algorithm is given in ESOP representation. An illustrative example of the
algorithm is given next.

Example 6. Consider the sequence y18 = 001101110010111011. The initializa-
tion procedure sets m = 3 and r = 2. Details are given in Figure 2, where d
equals yi + h(yi−1, yi−2, . . . , yi−m) and m is the complexity of yi. Thus, if d = 1
a discrepancy occurs. Note also that for i = 8 and i = 17 there is no need to
check the values of t0S , TS due to Proposition 5. The complexity of y18 equals 7.
The minimal nonlinear polynomial of yk, k = 4, 5, . . . 18 is given by the function
consisting of the sum of all the functions f δ appearing in Figure 2, for all i < k.

The computational complexity of the algorithm mainly rests with line 17 where
the ESOP boolean function is evaluated. For each n ≤ N the ESOP of the
minimal nonlinear polynomial of yn has less than n terms, each consisting of
at most n variables. Hence, the computational complexity of this step is at
most O(n2). Therefore, in the worst case, the total computational complexity
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for a given sequence of length N is O(N3) due to the recursive structure of the
algorithm.

5 Connections with Lempel-Ziv Compression Ratio

The LZ78 is a dictionary-based compression algorithm. A sequence yN with val-
ues lying in a finite alphabet is partitioned into pairwise distinct words s1, s2, . . .
(with a possible exception for the last word) such that each word si has the
property that its prefix s�(si)−1

i is a previous word sj for some j < i, where �(si)
is the length of si and sk

i , k ≤ �(si), denotes the first k elements of si [22].
The compression of yN is achieved by transforming each word si into a new

codeword s̃i consisting of two parts: the first part is the binary representation of
j where sj is the uniquely defined word by sj = s

�(si)−1
i and the second part is

simply the last symbol of si. Hence, if cLZ(yN ) is the number of distinct words
produced via the incremental parsing procedure of LZ78, then the compression
ratio of yN equals

ρyN =
1
N

cLZ(yN )∑
i=1

�log2(2i)� (6)

since the length of the codeword corresponding to si equals �log2(i)�+1 [22]. The
decoding procedure is straightforward. From (6) it is clear that as ρyN approaches
zero, better compression is achieved. Thus, sequences with large c(yN) and ρyN

are desirable for cryptographic purposes.
If a sequence yi is partitioned into k words, then the average length of the

words is denoted by xi and the average length of the codewords is denoted by wi.

Lemma 7. Consider two binary sequences y1, y2 parsed via the Lempel-Ziv in-
cremental parsing into k1, k2 words respectively, with k1 > k2. Then, ρy1 < ρy2

if and only if x1 >
w1
w2
x2.

Proof. It is straightforward since ρyi = wi

xi
, i = 1, 2. ��

Lemma 8. With the above notation, if k1 > k2 then w1 > w2. Furthermore, if
ρ1 < ρ2 then x1 > x2.

Proof. Assume that k1 = k2 + 1. Then w1 = 1
k2+1

∑k2+1
i=1 �log2(2i)� and w2 =

1
k2

∑k2
i=1�log2(2i)�. Let us suppose that w1 < w2. Then we have

k2

k2+1∑
i=1

�log2(2i)� < (k2 + 1)
k2∑

i=1

�log2(2i)� ⇒

k2�log2(2(k2 + 1))� <
k2∑

i=1

�log2(2i)�

leading to contradiction. Subsequently, w1 > w2 whenever k1 > k2 holds. Fur-
thermore, Lemma 7 implies that, if ρ1 < ρ2 then x1 > x2. ��
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It is clear from the description of LZ78 that any sequence of the form

yN = (yj1 yj1 yj2︸ ︷︷ ︸
2

yj1 yj2 yj3︸ ︷︷ ︸
3

. . . yj1 yj2 yj3 . . . yjs︸ ︷︷ ︸
s

) (7)

where N = 1
2s(s + 1), is partitioned via the LZ78 into the minimum possible

number of words amongst all the sequences of the same length.

Definition 9. Any binary sequence y lying in the following set

LZs
opt = {yN : N = 1

2s(s+ 1), cLZ(yN ) = s, s = 1, 2, 3, . . .}

is called s-optimal sequence and is denoted by ys
opt.

Lemma 10. Consider a binary sequence yN and let s be the smallest integer
such that N ≤ 1

2s(s+ 1). Then, ρyN ≥ ρys
opt

.

Proof. Let k equal the number of words resulting from the parsing of yN by
LZ78. The corresponding compression ratios are given by

ρyN =
1
N

k∑
i=1

�log2(2i)� and ρys
opt

=
2

s(s+ 1)

s∑
i=1

�log2(2i)� .

It clearly holds k ≥ s and, since N ≤ 1
2s(s+ 1), the claim follows. ��

Lemma 11. Let y1, y2 be s-optimal and (s+ 1)-optimal sequences respectively,
where s ≥ 3. Then ρy1 > ρy2 .

Proof. The proof is provided in the appendix. ��
Next the basic Theorem is presented, which illustrates the impact that complex-
ity has on the Lempel-Ziv compression ratio.

Theorem 12. Consider a periodic binary sequence y with period N and c(y) =
m ≥ 3. If ρy is the compression ratio that yN achieves via the Lempel-Ziv com-
pression algorithm, then it holds

ρy >
1

m(2m− 1)

2m−1∑
i=1

�log2(2i)� (8)

Proof. The lower bound given by (8) is the compression ratio of p-optimal se-
quences for p = 2m− 1. Clearly, according to Lemmas 10 and 11, any sequence
with period less than p(p+1)

2 can not achieve lower compression ratio. Let us
suppose that there exists a periodic sequence y′ with period N > p(p+1)

2 and
complexity m, such that y′N achieves better compression ratio than the one
given in (8). Clearly, the Lempel-Ziv partitioning of y′N results in k > p words.
Thus, according to Lemma 8, the average length of the parsed words is greater
than p+1

2 . But since p = 2m − 1, it holds p+1
2 = 2m

2 = m. Hence, the aver-
age length of the parsed words is greater than m. Subsequently, there exist at
least two identical m-tuples in y′N , contradicting the fact that y′ has complexity
m and period N . Since the same holds for any p-optimal sequence, the claim
follows. ��
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According to Lemma 11, the lower bound given by (8) decreases as the com-
plexity of a sequence increases, i.e. for any sequence with complexity m and
compression ratio close to the above bound, it is always possible to find a se-
quence with complexity m′ > m achieving a lower compression ratio. Recalling
that random sequences may attain a high compression ratio, this cryptographic
measure should be used to filter out sequences with high complexity and com-
pression ratio below some threshold.

6 Conclusions

This paper studies the nonlinear complexity of binary sequences and its connec-
tion with the Lempel-Ziv compression ratio. It provides a recursive algorithm,
based on Boolean algebra arguments, which computes the minimal nonlinear
shift register that generates a sequence. Furthermore, a lower bound is estab-
lished for the compression ratio of sequences with given nonlinear complexity,
illustrating a novel connection between these significant cryptographic criteria.
Experimental results have shown that the above bound could be further im-
proved; ongoing research is performed towards this direction.
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Appendix: Proof of Lemma 11

Note that x1 = s+1
2 and x2 = s+2

2 . Then, according to Lemma 7, it holds
ρy2 < ρy1 if and only if

s+ 2
2

>

∑ s+1
i=1 �log2(2i)�

s+1∑ s
i=1�log2(2i)�

s

s+ 1
2

which leads to the following relation

s+ 2
2

>
s

2
(1 +

�log2(2(s+ 1))�∑s
i=1�log2(2i)�

) . (9)

From (9) it is readily derived that

2
s
>
�log2(2(s+ 1))�∑s

i=1�log2(2i)�
⇔ s�log2(2(s+ 1))� < 2

s∑
i=1

�log2(2i)� . (10)

Let us first consider the case where s = 2n for some n ≥ 2. Then, (10) becomes

2
2n∑
i=1

�log2(2i)� > 2n�log2(2(2n + 1))� . (11)
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Next we prove the validity of (11). Indeed, (11) is equivalently written as follows

2
2n∑
i=1

�log2(2i)� > 2n(1 + � log2(2
n + 1)�)

⇔ 2
2n∑
i=1

�log2(2i)� > 2n(1 + n+ 1)

⇔
2n∑
i=1

�log2(2i)� > 2n + n2n−1 . (12)

Furthermore it holds
2n∑
i=1

�log2(2i)� =
2n∑
i=1

�1 + log2(i)� = 2n +
2n∑
i=1

�log2(i)� . (13)

Relation (13) implies that (12) is equivalent to

2n∑
i=1

�log2(i)� > n2n−1 . (14)

It is easily proved by induction that
∑2n

i=1�log2(i)� =
∑n

i=0 i2
i−1. This clearly

proves the validity of (14).
Let us now consider the case that s is not a power of 2. We shall proceed by

induction. The claim holds for s = 3. Let us suppose that it holds for s = k,
namely

k�log2(2(k + 1))� < 2
k∑

i=1

�log2(2i)� . (15)

It is next proved that the claim holds for s = k + 1, where k + 1 is not a power
of 2. In this case, it suffices to show that

(k + 1)�log2(2(k + 2))� < 2
k+1∑
i=1

�log2(2i)� .

Since 2
∑k+1

i=1 �log2(2i)� = 2
∑k

i=1�log2(2i)� + 2�log2(2(k + 1))�, (15) indicates
that is suffices to show that

k�log2(2(k + 1))�+ 2�log2(2(k + 1))� > (k + 1)�log2(2(k + 2))�

which is equivalently written as

k + 2
k + 1

>
�log2(2(k + 2))�
�log2(2(k + 1))� .

But since k + 1 is not a power of 2, it holds

�log2(2(k + 2))� = �log2(2(k + 1))�

and, thus, the claim follows.
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Abstract. We derive recurrences for counting the number a(n, r) of se-
quences of length n with Lempel-Ziv complexity r, which has important
applications, for instance testing randomness of binary sequences. We
also give algorithms to compute these recurrences. We employed these
algorithms to compute a(n, r) and expected value, EPn, of number of
patterns of a sequence of length n, for relatively large n. We offer a ran-
domness test based on the algorithms to be used for testing randomness
of binary sequences. We give outputs of the algorithms for some n. We
also provide results of the proposed test applied to the outputs of con-
testant stream ciphers of ECRYPT’s eSTREAM.

Keywords: Lempel-Ziv complexity, randomness, χ2-statistics.

1 Introduction

There are several complexity measures to test the randomness of a sequence.
Linear complexity, for example, is one of these measures. Lempel-Ziv complex-
ity of a sequence was defined by Lempel and Ziv in 1976 [1]. This measure
counts the number of different patterns in a sequence when scanned from left
to right. For instance Lempel-Ziv complexity of s = 101001010010111110 is 8,
because when scanned from left to right, different patterns observed in s are
1|0|10|01|010|0101|11|110|.

Lempel-Ziv complexity is the basis of LZ77 compression algorithm [2]. It is
also an important measure used in cryptography. For instance, it was used to test
the randomness of the output of a symmetric cipher [3]. One expects a ‘random’
sequence of length n has a close Lempel-Ziv complexity to the expected value of
Lempel-Ziv complexity of a sequence of length n. However, the expected value of
Lempel-Ziv complexity for arbitrary n is unknown. For limiting behaviour of this
value, the reader is referred to Jacquet and Szpankowski [4] and Kirschenhofer
et. al. [6]. Some cryptographic applications of Lempel-Ziv complexity are given
in [5].
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Some sequences end with a pattern that was observed before (one simplest
example is: s = 0|0), which we call open; and remaining sequences (i.e., that end
without same pattern appearing twice) are called closed.

In this paperwederive a recurrence for a(n, r), the number of sequences of length
nwith Lempel-Ziv complexity r; and a recurrence for c(n, r), the number of closed
sequences of length n with Lempel-Ziv complexity r. By using these recurrences
and with the help of a computer, we compute a(n, r) for as large n as possible.

A test based on Lempel-Ziv complexity was used in the NIST test suite, to
test the randomness of sequences. However the test had some weaknesses. First
of all, the test could only be applied to data of a specified length: 106 bits.
Moreover, the test used empirical data generated by SHA-1 (under randomness
assumptions) for estimating the expected value of Lempel-Ziv complexity of
sequences of length 106 bits. Apparently, the data generated by SHA-1 led to
not-so-good an estimate, hence, for instance, first 106 bits of the binary expansion
of e failed the randomness test. Using asymptotic formulae for an estimate will
not work either, since the sequences, as we will see in the forthcoming sections,
are distributed tightly around the mean. Recently, apparently because of the
spelt out reasons, Lempel-Ziv test had been excluded from the NIST test suite.
Inclusion of a Lempel-Ziv complexity based randomness test in a statistical test
suite is important concerning completeness. In the last section, we offer a new
and stronger variant of this test, which employs the results we found and present
in this paper. The data we use are neither empirical nor derived from asymptotic
formulae, but are exact results; thanks to the recurrences (1),(2), hence avoid
the errors present in the previous test.

2 Preliminaries

Lempel-Ziv complexity was first defined in [1]. We include the definitions here.
For the sequel, juxtaposition denotes concatenation of strings.

Let p = p1p2 · · · pk and s = s1s2 · · · sk · · · sn be binary strings. p is a prefix of
s if pi = si for 1 ≤ i ≤ k. If k < n, then p is said to be a proper prefix of s.

Let again s = s1s2 · · · sn be a binary string of length n. σ1| · · · |σr is called the
Lempel-Ziv partition of s, if

– for 1 ≤ i < r, σi is different from σj for 0 ≤ j < i, satisfying
– s = σ1σ2 · · ·σr, and
– for 1 ≤ i ≤ r, every proper prefix of σi is equal to σj for some 0 ≤ j < i.

where σi are binary strings (patterns) and σ0 is defined to be the empty string.
Lempel-Ziv complexity of s is then defined to be the number of patterns, r, in

the Lempel-Ziv partition of s.
Note that σr may or may not satisfy σr = σi for some 1 ≤ i < r. If σr = σi

for some 1 ≤ i < r, then we call s an open sequence. s is called closed otherwise.
Lempel-Ziv partition of:

– an open sequence s is denoted by s = σ1| · · · |σr,
– a closed sequence s is denoted by s = σ1| · · · |σr|.
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Succint background for statistical tests (especially for randomness) can be
found in [3].

3 The Recurrences

Let A(n, r) denote the set of binary strings of length n with Lempel-Ziv com-
plexity r. For any s = s1 · · · sn ∈ A(n, r) and sn+1 ∈ {0, 1}, it is evident that
ssn+1 ∈ A(n+1, r)∪A(n+1, r+1). In fact s0 ∈ A(n+1, r) ⇐⇒ s1 ∈ A(n+1, r).
We define

C(n, r) = {s ∈ A(n, r) : s0 ∈ A(n+ 1, r + 1)} .
Note that C(n, r) is the set of closed sequences. One has

a(n, r) = 2c(n− 1, r − 1) + 2 [a(n− 1, r)− c(n− 1, r)] , (1)

where a(n, r) = |A(n, r)| and c(n, r) = |C(n, r)|.
Given s = s1 · · · sn ∈ C(n, r), let σ1| . . . |σr | be the Lempel-Ziv partition

of s. We define the mapping δ0n,r : C(n, r) → C(n + r + 1, r + 1) by setting
δ0n,r(s) = 00σ10σ2 · · · 0σr for s = σ1 · · ·σr ∈ C(n, r). δ1n,r is defined in a similar
way. Let C0(n, r) = Im(δ0n−r,r−1), C1(n, r) = Im(δ1n−r,r−1), and C∗(n, r) =
C0(n, r)∪C1(n, r). It follows that c∗(n, r) = c0(n, r)+ c1(n, r) = 2c(n− r, r−1),
where c∗(n, r) = |C∗(n, r)|, c0(n, r) = |C0(n, r)|, c1(n, r) = |C1(n, r)|, and Im(f)
denotes the image of the map f .

Any s = σ1| · · · |σr| ∈ C(n, r)\C∗(n, r) has a unique substring α = α1| · · · |αp|
∈ C0(a, p), and a unique substring β = β1| · · · |βq| ∈ C1(b, q) such that a+ b = n
and p+ q = r.

For any pair (p, q) of positive integers, we consider the subset Ξp,q of the
symmetric group Sp+q given by:

Ξp,q =
{
σ ∈ Sp+q : i < j ≤ p or p+ 1 ≤ i < j ⇒ σ(i) < σ(j)

}
.

For α = α1| · · · |αp| ∈ C0(a, p), β = β1| · · · |βq| ∈ C1(b, q) and π ∈ Ξp,q, π(α, β)
stands for π(α1, . . . , αp, β1, . . . , βq).

Any triple (π, α, β), where π ∈ Ξp,q, α ∈ C0(a, p), β ∈ C1(b, q), corresponds
to a unique string in C(n, r) \C∗(n, r), namely to π(α, β). Conversely given any
σ ∈ C(n, r)\C∗(n, r), there exist a unique triple (π, α, β), such that π(α, β) = σ.

Given a, b, p and q, the number of all possible triples (π, α, β) with π ∈
Ξp,q, α ∈ C0(a, p), β ∈ C1(b, q) is(

p+ q

p

)
c0(a, p)c1(b, q) .

It follows that

c(n, r)− c∗(n, r) =
∑

a+b=n

∑
p+q=r
p,q≥1

(
p+ q

p

)
c0(a, p)c1(b, q)

=
∑

a+b=n

∑
p+q=r
p,q≥1

(
p+ q

p

)
c(a− p, p− 1)c(b− q, q − 1)
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⇒ c(n, r) = 2c(n− r, r − 1)+∑
a+b=n

∑
p+q=r
p,q≥1

(
p+ q

p

)
c(a− p, p− 1)c(b− q, q − 1)

= 2c(n− r, r − 1)+ (2)∑
0≤a≤n

∑
1≤p<r

(
r

p

)
c(a− p, p− 1)c(n− a− r + p, r − p− 1)︸ ︷︷ ︸

τ(n,r,a,p)

We can give upper and lower bounds for r, since not all r are possible given any
n. Indeed, observing s = 0|00|000| · · · has minimum complexity, and

s = 0|1|00|01|10|11|000|001|010|011| · · ·

has maximum complexity among all sequences of length n, we limit r by:⌈
−1 +

√
1 + 8n

2

⌉
≤ r ≤

⌈
2t+2 + n− 2t− 4

t+ 1

⌉
(3)

where t = max
{
i ∈ N : (i− 1)2i+1 + 2 ≤ n

}
. Note here that r is bounded by

r < k n
log n , for some k ∈ N. Indeed, t < logn for all n ≥ 2. Also⌈

2t+2 + n− 2t− 4
t+ 1

⌉
=
⌈

2t+2 − 2(t+ 2)
t+ 1

+
n

t+ 1

⌉
increases when t increases, hence

r ≤
⌈

2t+2 + n− 2t− 4
t+ 1

⌉
≤
⌈

4 · 2log n + n− 2logn− 4
logn+ 1

⌉
< 5

n

logn
.

4 Algorithms and Their Complexities

(1) implies computing c(n, r) for all k ≤ n, and knowing a(1, 1) = 2, is enough
to compute a(n, r) for any n ≥ 2. Therefore we use (2) to compute c(n, r), the
result of which is used by another algorithm to compute a(n, r). However, it is
inefficient to compute larger values (e.g., computing a(2000, r) for all r takes two
hours on a standard PC with our implementation). We use the recurrence (2) in
the following algorithm.

Compute-c(n,r)(N)
1 c(1, 1)← 2
2 for n← 2 to N
3 do for r ← rl(n) to ru(n)
4 do c(n, r)← 2c(n− r, r − 1)
5 for a← 0 to n
6 do for p← 1 to r
7 do c(n, r)← c(n, r) + τ(n, r, a, p)
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After we compute all c(n, r) for n < N , we use the following algorithm which is
based on the recurrence (1) to compute a(n, r).

Compute-a(n,r)(N, c(i, j))
1 a(1, 1)← 2
2 for n← 2 to N
3 do for r ← rl(n) to ru(n)
4 do a(n, r)← 2c(n− 1, r − 1) + 2 [a(n− 1, r)− c(n− 1, r)]

In the algorithms, rl and ru are computed by the inequalities (3).
We have the following observations for the complexity of the algorithms. For

any (n, r) pair, c(n, r) < 2n, hence an (at most) n-bit integer. Since r ≤ k ·
n/logn, and complexity of multiplication of two n bit integers is O(n logn) we
have :

Proposition 1. Complexity of the algorithm:

– Compute-c(n,r) is O(n5/logn), and
– Compute-a(n,r) is O(n2/logn) (after computing c(n, r)).

5 Computing a(n, r) for Large n

Tables 1 and 2 in Appendix A display the results for n = 100 and n = 250. Note
that without using the recurrences (1) and (2), time complexity to find these
results is O(n2n−1), impractical for today’s computers for n = 100 or n = 250.

Expected values EPn of number of patterns of a sequence of length n, for
n = 100 and n = 250 are EP100 = 29.04319 and P250 = 57.93485.

Table 4 in Appendix C displays the EPn values for some n ≤ 1000.

6 An Application: A Randomness Test for Binary
Sequences

We design a randomness test for binary sequences which employs the algorithms
as follows.

Given a sequence of length n bits. First divide the sequence into M =
⌊

n
k

⌋
non-overlapping blocks of length k bits, omitting if necessary last few bits. Apply
Lempel-Ziv partitioning procedure to each of these M blocks to get the number
of Lempel-Ziv partitions πi for 1 ≤ i ≤ M . From now on we choose k = 1024.
Set:

r1 = |{i : πi ≤ 174, 1 ≤ i ≤M}|,
r2 = |{i : πi = 175, 1 ≤ i ≤M}|,
r3 = |{i : πi = 176, 1 ≤ i ≤M}|,
r4 = |{i : πi = 177, 1 ≤ i ≤M}|,
r5 = |{i : πi ≥ 178, 1 ≤ i ≤M}|.
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We obviously have
∑5

i=1 ri = M . The numbers 174 through 178 are chosen
to align EP1024 = 176.09949 to the center.

Define the random variable X to be the number of partitions of a random
sequence of fixed length k bits. Employing the algorithm described in Section 4,
we obtain the following probabilities for k = 1024.

p1 = Pr(X ≤ 174) = 0.05262,
p2 = Pr(X = 175) = 0.19987,
p3 = Pr(X = 176) = 0.39720,
p4 = Pr(X = 177) = 0.29107,
p5 = Pr(X ≥ 178) = 0.05924.

Then apply the χ2-statistic to the observed data:

X(obs) =
5∑

i=1

(ri −Mpi)
2

Mpi

to get the χ2 random variable X(obs) with degree of freedom 4. Then, the P -
value of the test is:∫∞

X(obs) e
−u/2u du

Γ (2) 22
=

1
2
(X(obs) + 2)e−X(obs)/2 .

A condition that can be safely used with χ2-approximation is:

M ·min{pi : 1 ≤ i ≤ 5} = M · 0.05262 ≥ 5 .

Hence, if k is chosen to be 1024, then n should satisfy n ≥ 100000 approximately.
Note that the test can be applied for any k with respective pi ’s and ‘bins’ are
aligned aroundEPk and of course provided that computation of a(k, l) is feasible.

If the P -value of the observed data is less than some threshold (e.g., 0.01),
one can conclude that the given sequence is not random. The test applied to the
outputs of stream ciphers contesting in ECRYPT’s eSTREAM can be found in
Appendix B.

7 Conclusion and Future Work

We give two recurrences for the number of sequences of length n with Lempel-Ziv
complexity r. We also give the the algorithms and the output of the computer
programs that we run to calculate a(n, r) for relatively large values.

We also offer a randomness test that can be applied to the output of ciphers.
The recurrence (2) is quite hard to simplify, but can be used to improve the

limiting behaviour of the expected value of a(n, r).
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A Tables for n = 100 and n = 250

Table 1. a(100, r) and their probabilities

r a(100, r) a(100, r)/2100

14 122880 0.000000000000000
15 96129024 0.000000000000000
16 1754408140 0.000000000000000
17 169010698649 0.000000000000000
18 12282745099264 0.000000000000000
19 726896570696704 0.000000000000006
20 35864704163873996 0.000000000000283
21 1555171539525474304 0.000000000012268
22 629504083451115732992 0.000000000496591
23 23657061862581861351424 0.000000018662131
24 796717339700675605430272 0.000000628499162
25 25016712354109852183691264 0.000019734706353
26 701956405285233154502688768 0.000553745965299
27 14929637765344244033503887360 0.011777407562191
28 190072463603886098540862111744 0.149940735696149
29 785071700104053917078962307072 0.619312372007483
30 276807820976750678936983175168 0.218362868227975
31 41183640732091617843871744 0.000032488164108
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Table 2. a(250, r)

r a(250, r)

22 12582912
23 172462440448
24 207405092700160
25 100022234734919680
26 29027442465801502720
27 5970493862438356647936
28 947059437548499752058880
29 124084577391675511972954112
30 14104448150286646440414281728
31 1429659188269782925153552039936
32 131701470381268947695969402486784
33 11234825836624304676748166609502208
34 902346385748231250614173057894580224
35 68848617082812392433571189369104498688
36 5026197932887293151555523266808542920704
37 353853624800555379505246051484079264628736
38 24168383146155367527845519053853996700663808
39 1608511050085914176405326626207802044763340800
40 104662286330519094422345952269389211024618422272
41 6671326955511762120610779318782504320898951020544
42 417414764650712462333990517379047167232803455631360
43 25695057332640828405359742259152343883668370141216768
44 1557264023287411624909081480426191697539573325326450688
45 92701547946190343870914352507209237010079274453119795200
46 5404237040271065934800659259750349232918183084398749941760
47 308137037472343306269203510492671163205021043338817023508480
48 17174851395953502738636183446022389293687597007698530091925504
49 931658807304593772659970661068671319161079379311405098319478784
50 48481739469168604779398196043362721869737926469656763302282264576
51 2362999038927091779739893669395333742467402505543139386088962916352
52 104713381850515314827585466063284598037259318649923004999242356883456
53 4060841943120707511367011625729606171901794317261167326529027544449024
54 130173461076947361401256777713070992922594587328928989706197194351050752
55 3144432233774945014197088996141663864291615518236615683726382172345466880
56 49270065837659893327338857961415416600618856787734271093560018969747783680
57 389584816963822529432810975258074767638122905768577642480619865183753338880
58 990152575211374388394386838415206581167171380538108666357249216731099955200
59 373709741973491221158081813947703844668617084164776240113666220254822400000
60 3255419797444187375980631332217791151748569890952982076721561862144000000
61 886666544515752607846923627683910176444275554890872258560000000000
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B Test Results

Table 3. Results of LZ randomness test applied to eSTREAM contestants with pa-
rameters M = 800, k = 1024 and threshold < 0.01

eSTREAM stream cipher P − value

ABC-v2 0.215686
ACHTERBAHN 0.856026
CryptMT 0.281958
DECIM 0.435354
DICING 0.391681
Dragon 0.784314
Edon80 0.958401
F-FCSR-8 0.559503
FUBUKI 0.805604
Frogbit 0.247524
Grain 0.092822
HC-256 0.189772
Hermes8 0.548511
LEX 0.192730
MAG 0.172511
MICKEY-128 0.951844
MICKEY 0.958706
Mir-1 0.624140
POMARANCH 0.864929
Phelix 0.422482
Polar-Bear 0.032209
ProVEST-4 0.902847
Py 0.518629
Rabbit 0.654306
SFINKS 0.327318
Salsa20 0.325591
TRIVIUM 0.624686
TSC-3 0.943600
WG 0.836510
Yamb 0.514665
ZK-Crypt 0.590525
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C Table of Expected Values

Table 4. Expected values EPn for some n ≤ 1000

n EPn

968 168.285154708125871909
969 168.425325208575350399
970 168.565472359678417715
971 168.705595531148748041
972 168.845694563342602216
973 168.985769897582357720
974 169.125822268928967939
975 169.265852191319223625
976 169.405859611321451745
977 169.545843978226506736
978 169.685804672692994605
979 169.825741477831057654
980 169.965654751385158620
981 170.105545179628954902
982 170.245413297909854937
983 170.385259128160740312
984 170.525082193178254703
985 170.664881890971218212
986 170.804657952890038172
987 170.944410653561969008
988 171.084140625407537432
989 171.223848418188401220
990 171.363534125420147438
991 171.503197345751651805
992 171.642837501466368323
993 171.782454278665110691
994 171.922047870128312202
995 172.061618849379214303
996 172.201167772807546273
997 172.340694800677496380
998 172.480199609262570074
999 172.619681652361296729
1000 172.759140578329111086
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Abstract. Cryptographically strong sequences should have a large N-
adic complexity to thwart the known feedback with carry shift register
(FCSR) synthesis algorithms. At the same time the change of a few
terms should not cause a significant decrease of the N-adic complexity.
This requirement leads to the concept of the k-error N-adic complex-
ity. In this paper, an algorithm for upper bounding the k-error N-adic
complexity of the sequence with period T = pn, and p is just a prime,
is proposed by extending the 2-adic complexity synthesis algorithm of
Wilfried Meidl, and the Stamp-Martin algorithm. This algorithm is the
first concrete construction of the algorithm for calculating the k-error
N-adic complexity. Using the algorithm proposed, the upper bound of
the k-error N-adic complexity can be obtained in n steps.

1 Introduction

The notion of feedback with carry shift registers (FCSRs), introduced by Klapper
and Goresky [1], has received a great amount of attention in the cryptography[2],
[3], [4], [5], [6], [7], [8], [9]. Some basic properties of FCSR sequences have been
discussed, see [10] for a recent survey. Additionally, Wilfried Meidl [11] presented
an FCSR analog of the (extended) Games-Chan algorithm for up bounding the
2-adic complexity of a periodic binary sequence with period T = 2n or pn, where
p is an odd prime and 2 is a primitive element modulo p2.

It is well known that the linear complexity of a periodic sequence is unstable
under small perturbations [12], [13]. This is also true for the case of the N -adic
complexity. For example, let S = (1, 0, 0, ..., 0)∞ or (0, 1, 1, ..., 1)∞ with period T .
Then the N -adic complexity λN (S) of the sequence S is logN (NT −1). However,
after changing 1 bit within every period, theN -adic complexity becomes 0. Hence
it is interesting to investigate the properties of the k-error N -adic complexity of
periodic sequences.

The area of k-error N -adic complexity for the case of N = 2 was first formally
studied by Wang [14], and a lower bound of it was given by Hu [15]. The definition
of the k-error N -adic complexity of sequences is described as follows:
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Definition 1. Let S be a sequence with period T , then the k-error N -adic com-
plexity is defined as

λk,N (S) = min
per(t)=T,d(S,t)≤k

λN (t).

Remark 1. The minimum is extended over all T -periodic sequences t = t0, t1, · · · ,
tT−1, · · ·, for which the Hamming distance of the vectors (s0, s1, · · · , sT−1) and
(t0, t1, · · · , tT−1) is at most k. In this case we write d(S, t) ≤ k. The k-error N -
adic complexity defined above is similar to that of k-error linear complexity. In
other words, λk,N (S) is the least N -adic complexity λN (t) among all T -periodic
sequences t that are obtained by changing up to k terms among the first T terms
of S and continuing these changes periodically with period T .

There are no known efficient algorithms in the literature for calculating the
k-error N -adic complexity of a periodic sequence. In this paper, we will con-
struct an algorithm for up bounding the k-error N -adic complexity of a periodic
sequence with period pn, p is an prime, based on the 2-adic complexity synthesis
algorithm in [11].

In Section 2, the necessary background is established. The algorithm for com-
puting the k-error N -adic complexity is described in Section 3.

2 Preliminary

An FCSR is determined by coefficients q1, q2, · · · , qc, and an initial memorymc−1,
with qi ∈ {0, 1, · · · , N − 1} for i = 1, 2, · · · , c, and mc−1 ∈ Z, which can itera-
tively generate an FCSR-sequence S with initial state {s0, s1, · · · , sc−1} in the
following way, for n = c, c+ 1, · · ·, and si ∈ {0, 1, · · · , N − 1} for i = 0, 1, 2, · · ·:

– Form the integer sum σn =
∑c

k=1 qksn−k +mn−1,
– Shift the contents one step to the right, outputting the rightmost digit sn−c,
– Put sn = σn modN ,
– Replace the memory integer mn−1 with mn = (σn − sn)/N = �σn/N	.

The integer q = qcN
c+qc−1N

c−1+· · ·+q1N−1 is called the connection integer
of the FCSR. There is a useful polynomial f(x) =

∑T−1
i=0 six

i that associates a
sequence S with its N -adic interpretation. In this case the corresponding N -adic
number is given as

α = f(N)N0 + f(N)NT + f(N)N2T + · · · = −f(N)
NT − 1

Let us write α = −r/q as a fraction reduced to lowest terms and q is odd.
Then the eventual period T of the associated sequence with α = −r/q equals
ordq(N), where ordq(N) is the minimal integer t such that N t ≡ 1 (mod q).
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Then q = (NT − 1)/ gcd(NT − 1, f(N)) is the connection integer of the smallest
FCSR, and logN (q) is the N -adic complexity of the sequence S. Since the N -adic
complexity λN (S) measures the size of the smallest FCSR that can generate S, it
is of comparable significance as the linear complexity of the periodic sequence S.

Suppose that the period T of a sequence S is a power of a prime p, i.e.
T = pn, n ≥ 1. The integer Npn − 1 can be written as the product Npn − 1 =∏n

m=1 F
(p)
m with F

(p)
m = Npm−1

Npm−1−1
. We will need a key result, which may be

proved similarly to [11].

Lemma 1. Let ST = (s0, s1, . . . , sT−1) be a T -tuple, with si ∈ {0, 1, · · · , N − 1}
for i = 0, 1, 2, . . . , T − 1, . . . , T = pn, n ≥ 1. Let f(x) be the polynomial f(x) =∑T−1

i=0 six
i, and let Aj be the pn−1-tuple consisting of the string beginning at

s(j−1)pn−1 , i.e. Aj = (s(j−1)pn−1 , · · · , sjpn−1−1), j = 1, 2, . . . , p. Then

(i) F (p)
n divides f(N) if and only if A1 = A2 = · · · = Ap, and

(ii) F (p)
m , 1 ≤ m < n, divides f(N) if and only if it divides

A1(N) +A2(N) + · · ·+Ap(N),

where

Aj(x) =
pn−1−1∑

t=0

s(j−1)pn−1+tx
t, j = 1, . . . , p.

Given the first period ST = (s0, s1, . . . , sT−1), T = pn, of a sequence S, the
following Algorithm 1 is a simple extension of the algorithm that has given in
[11]. In the algorithm,

– If we have the equation A1 = A2 = · · · = Ap, then the N -adic complexity
does not increase and we apply the procedure to A1;

– Otherwise we increase the N -adic complexity by pn−1(p− 1) and apply the
procedure to A1(N) +A2(N) + · · ·+Ap(N).

Since C = A1(N)+A2(N)+· · ·+Ap(N) has to be not larger than p(Npn−1−1),
the N -adic expansion of it may have up to pn−1 + �logN (p)� digits. In this case
we can write C in the form a+ bNpn−1

with 0 ≤ a < Npn−1
and 1 ≤ b < p. Now,

C = a+ bNpn−1
= a+ b(F (p)

m

n−1∏
u=1,u�=m

F (p)
u + 1)

= a+ b+ bF (p)
m

n−1∏
u=1,u�=m

F (p)
u

Thus F (p)
m divides C if and only if it divides a+ b, 1 ≤ m ≤ n.

Note that the N -adic complexity only increases at a step unless A1 = A2 =
· · · = Ap. The following algorithm determines for which m the integer F

(p)
m
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divides f(N) =
∑T−1

i=0 siN
i, 1 ≤ m ≤ n. Since in general the integer F (p)

m is not
a prime, hence the algorithm yields an upper bound for q = (NT −1)/ gcd(NT −
1, f(N)), and thus for the N -adic complexity λN (s) = logN (q).

Algorithm 1: N -adic complexity synthesis algorithm

A = S, l = pn, δ = 1, λN(S) = 0,
while n > 0,
l = l/p,
Aj = (a(j−1)l, a(j−1)l+1, · · · , ajl−1), j = 1, 2, · · · , p,
if A1 = A2 = · · · = Ap,
A = A1,

else
δ = δF

(p)
n ,

λN (S) = λN (S) + pn−1(p− 1),
A = A1 ⊕A2 ⊕ · · · ⊕Ap,
if B = (apn−1 , apn−1+1, · · · , apn−1+�logN (p)�−1) 
= 0,
A = (a0, a1, · · · , apn−1−1),
A = A⊕B,

n = n− 1,
end while

Remark 2. Here the algebraic operation ⊕ is the N -adic addition, which is per-
formed by carrying overflow to higher order terms.

3 Extended Stamp-Martin Algorithm for Solving the
k-Error N -Adic Complexity Synthesis Problem

In the algorithm above, we found that the estimate of the N -adic complexity
increases unless A1 = A2 = · · · = Ap. Thus to find the k-errorN -adic complexity,
that is, to find the leastN -adic complexity among all T -periodic sequences t that
are obtained by changing up to k terms among the first T terms of the sequence
S, the principal goal of the algorithm is to change as few terms among the first
T terms of S as possible to make the equation A1 = A2 = · · · = Ap hold. In the
following we give an algorithm for estimating the upper bound for the k-error
N -adic complexity of a periodic sequence with period T = pn that is an analog of
the Stamp-Martin algorithm [16] for computing the k-error linear complexity of
a periodic sequence with the same period. Here p is a prime. Similar to Algorithm
1, we denote ⊕ as the N -adic addition. The vector of cos t[ai, h]’s is intended
to measure the ” cos t”-in terms of the least number of terms changes required
in the original sequence S-of changing the current element ai into h without
disturbing the results A1 = A2 = · · · = Ap of any previous steps.
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3.1 The Synthesis Algorithm for Computing the k-Error N-Adic
Complexity of a Periodic Sequence with Period T = pn, Here p
Is a Prime

Algorithm 2: k-error N -adic complexity synthesis algorithm

A ← S, l ← pn, cos t[ai, ai] ← 0, for all h ∈ 0, 1, · · · , N − 1 and h 
= ai,
cos t[ai, h] ← 1, i = 0, 1, 2, · · · , l − 1, cos t[cj ,m] ← 1, j = 0, 1, 2, · · · , l, m 
= cj ,
cos t[cj , cj ]← 0, c0 ← 0. δ ← 1, λN (S)← 0,

1. If l = 1, then stop; else, l ← l/p, Aj = (a(j−1)l, a(j−1)l+1, · · · , ajl−1), j =
1, 2, · · · , p, Tih =

∑p−1
j=0 [ai+jl, h], h = 0, 1, · · · , N−1, Ti = min0≤h≤N−1 {Tih},

i = 0, 1, 2, · · · , l − 1, T =
∑l−1

i=0 Ti, turn to 2.

2. If T ≤ k, then k ← k−T, cos t[ai, h]← Tih−Ti, h = 0, 1, · · · , N −1, and i =
0, 1, 2, · · · , l−1, turn to 3; else, A← A1⊕A2⊕· · ·⊕Ap, and the corresponding
overflows are denoted as integer vector (c0, c1, c2, · · · , cl−1, cl), c0 = 0, 0 ≤
ci ≤ p − 1, 1 ≤ i ≤ l, λN (S) ← λN (S) + l(p − 1), δ ← δF

(p)
2 . Let temp =

d0 + d1 + · · ·+ dp, then

cos t[ci+1, g]← min
temp=(g−ci+1)N

{
p−1∑
k=0

cos t[ai+kl, ai+kl + dk], cos t[ci, ci + dp]

}
,

cos t[ai, h]← min
temp=h−ai

{
p−1∑
k=0

cos t[ai+kl, ai+kl + dk], cos t[ci, ci + dp]

}
,

i = 0, 1, 2, · · · , l − 1, h ∈ {0, 1, · · · , N − 1}, and g ∈ {0, 1, · · · , N − 1}. If
cl 
= 0, we denote B as (al, al+1, · · · , al+�logN (p)�−1), A as (a0, a1, · · · , al−1),
U as A⊕B, and V = (v0, v1, · · · , vl−1) as the corresponding overflows, v0 = 0.
Then

cos t[ui, h]← min
d0−d1N=h−ui

{cos t[ai, ai + d0], cos t[ai+1, ai+1 + d1]},

ai+1 ← ai+1+d1, i = 0, 1, 2, · · · , l−2, h ∈ 0, 1, · · · , N − 1, here d1 ∈ {−1, 0, 1}
and ai + d0 ∈ {0, 1, · · · , N − 1}. Then

• If ai+1 + d1 = N, then cos t[ai+1, ai+1 + d1]← cos t[ai+1, 0];
• Else if ai+1 + d1 = −1, and we have ai+k = 0 for all k = 2, · · · , w, but
ai+w+1 
= 0, then

cos t[ai+1, ai+1 + d1]←
w∑

k=1

cos t[ai+k, N − 1]+ cos t[ai+w+1, ai+w+1− 1].

U → A, turn to 1.
3. For j = 1, 2, · · · , l, if Tjh = Tj , then aj = h. A← A1, turn to 1.
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Remark 3. The output δ is the connection integer of an FCSR that can generate
the sequence t = t0, t1, · · · , tT−1, · · · for which the Hamming distance of the
vectors (s0, s1, · · · , sT−1) and (t0, t1, · · · , tT−1) is at most k. Since in general the
integer F (p)

n is not a prime, δ might not be the connection integer of the smallest
FCSR that can generate t. Thus, the k-error N -adic complexity λk,N (S) satisfies
λk,N (S) ≤ logN (δ). The coefficients of the FCSR correspond to the coefficients
of the N -adic expansion of δ + 1 = qcN

c + qc−1N
c−1 + · · · + q1N. If δ + 1 =

Nλk,N (S)+1, trivially we have c = λk,N (S)+1. Else we have c = �logN (δ+1)	 =
λk,N (S). Thus the output λk,N (S) satisfies λk,N (S) < logN (δ) < λk,N (S) + 1.

3.2 The Validity of the k-Error N-Adic Complexity Synthesis
Algorithm

Theorem 1. Let S be a sequence with period T = pn. Here p is a prime, and
0 ≤ k ≤ pn. Then the integer λN (S) that has been obtained by Algorithm 2 above
is an upper bound for the k-error N -adic complexity of the sequence S.

Proof. The outline of the proof follows: first two paragraphs will tell us two
switches (k > 0 and k = 0) to be proved, finally, an epagoge is given to prove
that cos t[i, h] correctly records the cost of changing ai without disturbing the
results A1 = A2 = · · · = Ap of any previous steps.

When k = 0, Algorithm 2 just reduces to Algorithm 1.
When k > 0, to obtain the k-error N -adic complexity, we are allowed to make

k (or fewer) changes in S in order to reduce the N -adic complexity as much
as possible. But as with Algorithm 1, the N -adic complexity increases unless
A1 = A2 = · · · = Ap. Notice that if the equation doesn’t hold in step m of
Algorithm 2, and we can change up to k terms among the first T terms of S
to make it hold, we do so, by which we can avoid adding the (p− 1)pn−m into
λN (S), and the total of all remaining possible additions is only pn−m. This is
the basic logic of the algorithm.

Now, suppose we have computed to step m, and cos t[i, h] correctly records
the cost of changing ai into h. If not all of the terms ai+(j−1)l, j = 1, 2, · · · , p,
are equal, then we need change all of which into a same element, say h, to make
them equal. Thus the total cost to make them equal is just the minimal cost that
makes these ai+(j−1)l, j = 1, 2, · · · , p, equal to h, that is Ti = min0≤h≤N−1 {Tih}.
Thus the variable T =

∑l−1
i=0 Ti correctly records the total cost of making

A1 = A2 = · · · = Ap.

If T ≤ k,

– If not all of the terms ai+(j−1)l, j = 1, 2, · · · , p, are equal (in step m), and
Tih = Ti, then we need change all of the them into h, since such changes
can minimize the corresponding total cost that makes these ai+(j−1)l, j =
1, 2, · · · , p, equal. Note that at the end of this step, we have A ← A1. If we
need change ai (which has been made equal to d in step m) into h in step
(m + 1), to keep all of the terms ai+(j−1)l, j = 1, 2, · · · , p, are equal in step
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m, we have to change them into h in step m, which has a net cost of Tih−Ti

and hence cos t[i, h] is computed correctly in this case.
– If all of the terms ai+(j−1)l, j = 1, 2, · · · , p, are equal, then Ti = 0. Note that

at the end of this step, we have A ← A1. If we need change ai (which has
been made equal to d in step m) into h in step (m + 1), to keep all of the
terms ai+(j−1)l, j = 1, 2, · · · , p, are equal in step m, we have to change all of
them into h in step m, which has a net cost of Tih = Tih − Ti, and hence
cos t[i, h] is computed correctly in this case.

If T > k, we haven’t the means to make A1 = A2 = · · · = Ap. However at the
end of this step, we have A← A1⊕A2⊕· · ·⊕Ap. If the corresponding overflows
are denoted as integer vector (c0, c1, c2, · · · , cl−1, cl), c0 is 0, 0 ≤ ci ≤ p− 1, 1 ≤
i ≤ l, then,

– If we need change ci+1 into g, we have to change ai+jl, j = 0, 1, · · · , p − 1,
into ai+jl + dj , j = 0, 1, · · · , p − 1, and ci into ci + dp, in step m, here∑p

j=0 dj = (g − cj+1)N. Then the cost for changing ci+1 into g in step
(m+ 1) is just

cos t[ci+1, g] = min
temp=(g−ci+1)N

{
p−1∑
k=0

cos t[ai+kl, ai+kl + dk], cos t[ci, ci + dp]

}
,

here temp = d0 + d1 + · · ·+ dp, and hence cos t[ci, g] is computed correctly.
– If we need change ai into h in step (m + 1), we have to change ai+jl, j =

0, 1, · · · , p−1, into ai+jl +dj, j = 0, 1, · · · , p−1, and ci into ci+dp, in step m,
here

∑p
j=0 dj = h− ai. Then the cost for changing ai into h in step (m+ 1)

is just

cos t[ai, h] = min
temp=h−ai

{
p−1∑
k=0

cos t[ai+kl, ai+kl + dk], cos t[ci, ci + dp]

}
,

here temp = d0 + d1 + · · ·+ dp, and hence cos t[ai, h] is computed correctly
in this case.

– If cl 
= 0, then B = (al, al+1, · · · , al+�logN (p)�−1) 
= 0, from Theorem 1, if we
denote A as vector (a0, a1, · · · , al−1), then at the end of this step we have
A← A⊕B. In the following, we denote U = A⊕B, A = (a0, a1, · · · , al−1),
and the corresponding overflows as vector V = (v0, v1, · · · , vl−1), v0 = 0.
If we need change ui into h and keep the values of others in step (m + 1),
we have to change ai into ai + d0, and ai+1 into ai+1 + d1, in step m, here
d0 − d1N = h − ui, d1 ∈ {−1, 0, 1}, ai + d0 ∈ {0, 1, · · · , N − 1}. Then the
cost for changing ui into h in step (m+ 1) is just

cos t[ui, h] = min
d0−d1N=h−ui

{cos t[ai, ai + d0], cos t[ai+1, ai+1 + d1]},

and hence cos t[ai, h] is computed correctly in this case. And to keep the
value of ui+1, we have ai+1 + d1 → ai+1. However,
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• ai+1 + d1 may equal to N, then it is clear that

cos t[ai+1, ai+1 + d1] = cos t[ai+1, 0];

• ai+1 + d1 may equal to -1, and if ai + k = 0 for all k = 2, · · · , w, but
ai+w+1 
= 0, then we have

cos t[ai+1, ai+1 + d1] =
w∑

k=1

cos t[ai+k, N − 1] + cos t[ai+w+1, ai+w+1 − 1].

Finally, when n = 0, there remains only one term a0. Since for the all-0
sequence and the all-1 sequence, the N -adic complexity is 0. Thus the algorithm
is terminated when the vector (0) or the vector (1) is encountered.

Remark 4. Algorithm 2 given yields an upper bound for the k-error N -adic com-
plexity of a given pn-periodic sequence S in n steps. In each step we just have to
compute the cost for pn−1 terms ci and pn−1 terms ai respectively, and have to add
p N -adic integers of the length at most pn−1 (plus one supplementary addition if
we have an overflow). The time complexity of Algorithm 2 is O(pn), while the ob-
vious algorithm of computing the N -adic complexity of every sequence obtained
by modifying up to k bits of S via Algorithm 1, has complexity O(2k · pn).

4 Conclusion

We have exhibited an efficient algorithm which upper-bounds the k-error N -adic
complexity of a periodic sequence of period T = pn. The algorithm given in this
paper is an extension of the Stamp-Martin algorithm. It remains a challenging
open problem to design an algorithm, which efficiently computes the k-error
N -adic complexity of sequences of arbitrary period.
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Abstract. Recently people show some interest in the word-based stream
ciphers. The theory of such stream ciphers requires the study of the com-
plexity of multisequences. The 2-adic complexity is the FCSR analog of
the linear complexity, and it is very useful in the study of the security
of stream ciphers. The improved version of 2-adic complexity—the sym-
metric 2-adic complexity was presented in 2004 which is a better measure
for the cryptographic strength of binary sequences. In this paper, we de-
rive the expected value of the joint 2-adic complexity of periodic binary
multisequences. A nontrivial lower bound for the expected value of the
joint symmetric 2-adic complexity of periodic binary multisequences is
also given.

1 Introduction

By adding a memory to linear feedback shift register, Klapper and Goresky
introduced feedback with carry shift register (FCSR) in [1] (see also [2,3,4,6]).
Based on the new feedback architecture they proposed the concept of the 2-adic
complexity which is very useful in the study of the security of stream ciphers. An
FCSR is determined by r coefficients q1, q2, ..., qr, where qi ∈ {0, 1}, i = 1, 2, ..., r,
and an initial memory mr−1. If the contents of the register at any time are
(ar−1, ar−2, ..., a1, a0) and the memory is m, then the operation of the shift
register is defined as follows:

1. Take the integer sum σ =
∑r

k=1 qkar−k +m;
2. Shift the contents one step to the right, while outputting the rightmost bit

a0;
3. Put ar ≡ σ mod 2 into the leftmost cell of the shift register;
4. Replace m with m = (σ − ar)/2;

The integer q = −1 + q12 + q222 + ... + qr2r is called the connection integer of
the FCSR.
� This work was supported in part by the National Natural Science Foundation of

China (No. 90604011 and 90604036) and the National Grand Fundamental Research
973 Program of China (No. 2004CB318004).
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q1 q2 qr-1 qr

an-1 an-2 … an-r+1 an-r

…
div  2 mod  2

mn-1

Fig. 1. Feedback with carry shift register

In [1,2,3,4,6], Klapper and Goresky discussed some basic properties of FCSR
sequences, such as their periods, rational expressions, exponential representa-
tions, rational approximation algorithms and their randomness. The summation
cipher proposed by Rueppel [7] is insecure under the attack of the rational ap-
proximation algorithm (an analog of the Berlekamp-Massey algorithm, see [6]).
In [8], Meidl presented an FCSR analog of (extended) Games-Chan algorithm
which can efficiently give an upper bound for the 2-adic complexity of a pn-
periodic binary sequence.

Any infinite binary sequence S = {si}∞i=0 can be identified with the element
α =

∑∞
i=0 si2i in the ring Z2 of 2-adic numbers. For a comprehensive survey of

p-adic numbers the reader is referred to [9]. The sequence S is eventually periodic
if and only if the 2-adic number α is rational, i.e., there exist integers p, q such
that α = −p/q ∈ Z2. In particular, if S is strictly periodic with minimal period
T , then

α =
∞∑

i=0

si2i = −
∑T−1

i=0 si2i

2T − 1
= −p

q
,

where 0 ≤ p ≤ q. p = q if and only if S is the all-1 sequence. We call −p/q
the rational expression of S. If gcd(p, q)=1, −p/q is called the reduced rational
expression of S. In that case, T = ordq(2), where ordq(2) is the minimal integer
t such that 2t ≡ 1 (mod q), and q is the connection integer of the smallest FCSR
[6], i.e. the FCSR with minimal number r of coefficients qi which can generate
the binary sequence S. From now on we only consider strictly periodic sequences,
and we just call them periodic sequences for simplicity.

Definition 1. [6] Let S be a periodic binary sequence with reduced rational ex-
pression −p/q, then the 2-adic complexity Φ(S) of S is the real number log2q.

Remark 1. If S is the all-0 sequence or the all-1 sequence, then Φ(S) = 0.

The improved version of 2-adic complexity—the symmetric 2-adic complexity is
given below, which is a better measure for the cryptographic strength of binary
sequences.

Definition 2. [5] Let S be a periodic binary sequence with reduced rational ex-
pression −p/q. Let Ŝ be its inverse sequence with reduced rational expression
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−p′
/q

′
. Then the symmetric 2-adic complexity Φ(S) of S is the real number

min(log2q, log2q
′
).

Using the rational approximation algorithm, only a knowledge of �2Φ(S)�+2 bits
is sufficient to reproduce the sequence S (see [6], Theorem 10.2). Therefore any
binary sequence with low symmetric 2-complexity is insecure for cryptographic
applications.

The linear complexity of a periodic sequence is the least order of a linear re-
currence relation that the sequence satisfies [11]. In [7], Rueppel conjectured that
periodic sequences have expected linear complexity close to the period T . In [12],
Meidl and Niederreiter determined the expected value of the linear complexity of
T -periodic sequences explicitly by the generalized discrete Fourier transform and
confirmed Rueppel’s conjecture. Moreover, they also determined the expected
value of the joint linear complexity of T -periodic multisequences explicitly in
[13]. Hu and Feng determined the expected value of the 2-adic complexity of
periodic binary sequences, and gave a nontrivial lower bound for the expected
value of the symmetric 2-adic complexity of periodic binary sequences in [5]. In
this paper, we derive the expected value of the joint 2-adic complexity of periodic
binary multisequences, and give a nontrivial lower bound for the expected value
of the joint symmetric 2-adic complexity of periodic binary multisequences.

The underlying stochastic model is that every binary sequence with period T
has the same probability 1/2T in the following sections.

2 The Expected Value of the Joint 2-Adic Complexity of
Periodic Binary Multisequences

From now on, we call q a connection integer of a sequence if the sequence can
be generated by an FCSR with connection integer q.

Let S = {si}∞i=0 be a periodic binary sequence with period T . We can describe
S by the notation S = (s0, s1, ..., sT−1)∞ because S is completely determined
by its first T terms. We define ST (x) to be the polynomial

ST (x) = s0 + s1x+ ...+ sT−1x
T−1.

Suppose that 2T − 1 = pe1
1 p

e2
2 ...p

eh

h , where pi are prime numbers with p1 < p2 <
... < ph, ei ≥ 1, i = 1, 2, ..., h. Let Γ be the set of binary sequences with period
T except the all-1 sequence. If S ∈ Γ , then we have

α = − ST (2)
2T − 1

= − a

p
fi1
i1
p

fi2
i2
...p

fit

it

, (1)

where 1 ≤ t ≤ h, 1 ≤ i1 < i2 < ... < it ≤ h, 1 ≤ fij ≤ eij , 0 ≤ a <
∏t

j=1 p
fij

ij
.

p
fi1
i1
p

fi2
i2
...p

fit

it
is a connection integer of S. Moreover, if gcd(a,

∏t
j=1 p

fij

ij
) = 1,

p
fi1
i1
p

fi2
i2
...p

fit

it
is the minimal connection integer of S.
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By (1), there are pfi1
i1
p

fi2
i2
...p

fit

it
binary sequences of period T with pfi1

i1
p

fi2
i2
...p

fit

it

as a connection integer except for the all-1 sequence. In particular, there are∏t
j=1 φ(p

fij

ij
) binary sequences of period T with p

fi1
i1
p

fi2
i2
...p

fit

it
as the minimal

connection integer, where φ is the Euler function.
For any 1 ≤ t ≤ h, 1 ≤ i1 < i2 < ... < it ≤ h, 1 ≤ fij ≤ eij , let

Γfi1 ,fi2 ,...,fit
= {(ai1 , ai2 , ..., ait)|0 ≤ aij < p

fij

ij
, j = 1, 2, ..., t},

and let Ωfi1 ,fi2 ,...,fit
be the set of periodic binary sequences of period T with

p
fi1
i1
p

fi2
i2
...p

fit

it
as a connection integer except the all-1 sequence.

We define the mapping

ρ : Γfi1 ,fi2 ,...,fit
�→ Ωfi1 ,fi2 ,...,fit

as follows: for any (ai1 , ai2 , ..., ait) ∈ Γfi1 ,fi2 ,...,fit
, by Chinese Remainder Theo-

rem [10], there exists unique a such that 0 ≤ a <
∏t

j=1 p
fij

ij
and a≡aij (mod p

fij

ij
),

j = 1, 2, ..., t. Let S be the sequence with rational expression

− a

p
fi1
i1
p

fi2
i2
...p

fit

it

.

Put ρ((ai1 , ai2 , ..., ait)) = S.
We have the following lemma.

Lemma 1. With the notations as above, ρ is a one-to-one correspondence between
Γfi1 ,fi2 ,...,fit

and Ωfi1 ,fi2 ,...,fit
. Moreover, for any (ai1 , ai2 , ..., ait) ∈

Γfi1 ,fi2 ,...,fit
, pfi1

i1
p

fi2
i2
...p

fit

it
is the minimal connection integer of ρ((ai1 , ai2 , ..., ait))

if and only if gcd(aij , p
fij

ij
) = 1, j = 1, 2, ..., t.

Now we consider the multisequence case.

Lemma 2. For any m ≥ 1, let S1, S2, ..., Sm be m binary sequences with pe-
riod T , and their reduced rational expressions are −p1/q1,−p2/q2, ...,−pm/qm

respectively. Then q = lcm(q1, q2, ..., qm) is the smallest integer such that there
exists an FCSR with connection integer q which can generate S1, S2, ..., Sm si-
multaneously.

Remark 2. q = lcm(q1, q2, ..., qm) ≤ 2T − 1.

With the notations as in Lemma 2, we call log2 lcm(q1, q2, ..., qm) the 2-adic
complexity of the m sequences S1, S2, ..., Sm, and denote it by Φ(S1, S2, ..., Sm).

For any f1, f2, ..., fh satisfying 1 ≤ fij ≤ eij , 1 ≤ i1 < i2 < ... < it ≤ h, 1 ≤
t ≤ h,fj = 0, j 
= i1, ..., it, by Lemmas 1 and 2, the number Nm(f1, f2, ..., fh)
of sequences S1, S2, ..., Sm ∈ Γ such that Φ(S1, S2, ..., Sm) =

∑h
i=1 fi log2 pi

satisfies

Nm(f1, f2, ..., fh) =
t∏

k=1

[(p
fik

ik
)m − (p

fik
−1

ik
)m] =

h∏
k=1

ψ(pk,m, fk), (2)

where ψ(pk,m, fk) = pmfk

k − pm(fk−1)
k if fk ≥ 1; ψ(pk,m, fk) = 1 if fk = 0.
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Lemma 3. For any real number x 
= 0, 1,

e∑
n=1

nxn−1 =
1− (e+ 1)xe + exe+1

(x− 1)2
.

Lemma 4. Suppose that T ≥ 2 and 2T − 1 = pe1
1 p

e2
2 ...p

eh

h , where pi are prime
numbers with p1 < p2 < ... < ph, ei ≥ 1, i = 1, 2, ..., h. For any m ≥ 1, we have∑

S1,S2,...,Sm∈Γ

Φ(S1, S2, ..., Sm)

= (2T − 1)m log2(2
T − 1)− (2T − 1)m

h∑
i=1

(1 − p−mei

i ) log2 pi

pm
i − 1

.

Proof. We have∑
S1,S2,...,Sm∈Γ

Φ(S1, S2, ..., Sm)

=
e1∑

f1=0

e2∑
f2=0

...

eh∑
fh=0

Nm(f1, f2, ..., fh)(f1 log2 p1 + f2 log2 p2 + ...+ fh log2 ph).

By (2),∑
S1,S2,...,Sm∈Γ

Φ(S1, S2, ..., Sm)

=
e1∑

f1=0

e2∑
f2=0

...

eh∑
fh=0

h∏
k=1

ψ(pk,m, fk)(f1 log2 p1 + f2 log2 p2 + ...+ fh log2 ph)

=
h∑

i=1

ei∑
fi=0

ψ(pi,m, fi)fi log2 pi

h∏
k=1,k �=i

ek∑
fk=0

ψ(pk,m, fk)

=
h∑

i=1

pme1
1 ...p

mei−1
i−1 p

mei+1
i+1 ...pmeh

h

ei∑
fi=0

ψ(pi,m, fi)fi log2 pi

=
h∑

i=1

pme1
1 ...p

mei−1
i−1 p

mei+1
i+1 ...pmeh

h (pm
i − 1) log2 pi

ei∑
fi=1

fip
m(fi−1)
i .

By Lemma 3, ∑
S1,S2,...,Sm∈Γ

Φ(S1, S2, ..., Sm)

= (2T − 1)m
h∑

i=1

log2 pi
eip

m(ei+1)
i − (ei + 1)pmei

i + 1
(pm

i − 1)pmei

i
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= (2T − 1)m
h∑

i=1

[
ei log2 pi −

(1 − p−mei

i ) log2 pi

pm
i − 1

]

= (2T − 1)m log2(2
T − 1)− (2T − 1)m

h∑
i=1

(1− p−mei

i ) log2 pi

pm
i − 1

.

Let ET,n denote the expected value of the joint 2-adic complexity of n periodic
binary sequences with period T . We have the following theorem.

Theorem 1. Suppose that T ≥ 2 and 2T − 1 = pe1
1 p

e2
2 ...p

eh

h , where pi are prime
numbers with p1 < p2 < ... < ph, ei ≥ 1, i = 1, 2, ..., h. Then the expected value
ET,n of the joint 2-adic complexity of n binary sequences of period T satisfies

ET,n = log2(2
T − 1)−

h∑
i=1

ei∑
k=1

(
2T − 1
2T pk

i

+
1
2T

)n log2 pi.

Proof. We denote the all-1 sequence by
−→
1 . Then we have

2nT ·ET,n

=
∑

S1,S2,...,Sn∈Γ∪{−→1 }
Φ(S1, S2, ..., Sn)

=
n∑

m=1

(
n

n−m

) ∑
S1,S2,...,Sm∈Γ

Φ(S1, S2, ..., Sm)

=
n∑

m=1

(
n

m

)[
(2T − 1)m log2(2

T − 1)− (2T − 1)m
h∑

i=1

(1 − p−mei

i ) log2 pi

pm
i − 1

]

= (2Tn − 1) log2(2
T − 1)−

h∑
i=1

[
ei∑

k=1

(
2T − 1
pk

i

+ 1)n − ei

]
log2 pi

= 2Tn log2(2
T − 1)−

h∑
i=1

ei∑
k=1

(
2T − 1
pk

i

+ 1)n log2 pi.

Thus

ET,n = log2(2
T − 1)−

h∑
i=1

ei∑
k=1

(
2T − 1
2T pk

i

+
1
2T

)n log2 pi.

Corollary 1. If T is as above, then the expected value ET,n of the joint 2-adic
complexity of binary sequences of period T satisfies

ET,n > log2(2
T − 1)−

h∑
i=1

2n

pn
i − 1

log2 pi.
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Proof. With the notations as in Theorem 1, because pk
i < 2T , we have

h∑
i=1

ei∑
k=1

(
2T − 1
2T pk

i

+
1
2T

)n log2 pi <

h∑
i=1

ei∑
k=1

(
2
pk

i

)n log2 pi

=
h∑

i=1

2n(1− p−nei

i )
pn

i − 1
log2 pi

<

h∑
i=1

2n

pn
i − 1

log2 pi.

By Theorem 1, the result follows.

In particular, if 2T − 1 is prime, we have the following corollary.

Corollary 2. If 2T − 1 is prime, then the expected value En
T of the joint 2-adic

complexity of binary sequences of period T is given by

ET,n = [1− 1
2n(T−1)

] log2(2
T − 1).

Proof. With the notations as in Theorem 1, because 2T − 1 is prime, we have
h = 1, e1 = 1, and p1 = 2T − 1. The result follows from Theorem 1.

3 The Expected Value of the Joint Symmetric 2-Adic
Complexity of Periodic Binary Multisequences

For any binary sequence S = (s0, s1, ..., sT−1)∞ of period T , let Ŝ be the inverse
sequence of S, i.e., Ŝ = (sT−1, sT−2, ..., s1, s0)∞. For any n binary sequences
S1, S2, ..., Sn of period T , their joint symmetric 2-adic complexity is defined to
be min(Φ(S1, S2, ..., Sn), Φ(Ŝ1, Ŝ2, ..., Ŝn)), and we denote it by Φ(S1, S2, ..., Sn).
One can check that Φ(S1, S2, ..., Sn) ≥ Φ(Si), i = 1, 2, · · · , n.

Lemma 5. [5] There are at least 2φ(2T − 1) − (2T − 1) binary sequences S of
period T such that the symmetric 2-adic complexity of S is Φ(S) = log2(2

T −1).

Let ET,n denote the expected value of the joint symmetric 2-adic complexity
of n periodic binary sequences with period T . For any i, 1 ≤ i ≤ n, if the
symmetric 2-adic complexity of Si is Φ(Si) = log2(2T −1), then Φ(S1, S2, ..., Sn)
= log2(2T − 1).

LetA = {S ∈ Γ | Φ(S) = log2(2
T−1)}, and B = {S ∈ Γ | gcd(ST (2), 2T−1) >

1}. Then the cardinality of A is at least 2φ(2T −1)−(2T −1), and the cardinality
of B is 2T − 1 − φ(2T − 1). Moreover, A ∩ B = ∅, where ∅ is the empty set.
Put

H1 = {(S1, S2, ..., Sn) | S1 ∈ A, Sj ∈ Γ ∪ {
−→
1 }, j = 2, 3, · · · , n},

Hn = {(S1, S2, ..., Sn) | Sj ∈ B, j = 1, 2, · · · , n− 1, Sn ∈ A}.
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For any 2 ≤ i ≤ n−1, put Hi = {(S1, S2, ..., Sn) | Sj ∈ B, j = 1, 2, · · · , i−1, Si ∈
A, Sj ∈ Γ ∪ {−→1 }, j = i + 1, · · · , n}. Then for any 1 ≤ i < j ≤ n, we have
Hi ∩Hj = ∅.

Theorem 2. Suppose that T ≥ 2 and 2T − 1 = pe1
1 p

e2
2 ...p

eh

h , where pi are prime
numbers with p1 < p2 < ... < ph, ei ≥ 1, i = 1, 2, ..., h. Then the expected value
ET,n of the joint symmetric 2-adic complexity of n binary sequences of period T
satisfies

ET,n ≥
n−1∑
k=0

(
2T − 1

2T
)k+1

[
1− (1− 1

p1
) · · · (1− 1

ph
)
]k

·
[
2(1− 1

p1
) · · · (1− 1

ph
)− 1

]
log2(2

T − 1).

Proof. Let N = 2T − 1, a = φ(2T − 1). By the analysis above, we have

2nT ·ET,n ≥ [(2a−N)2(n−1)T + (N − a)(2a−N)2(n−2)T +
· · ·+ (N − a)n−1(2a−N)] log2(2

T − 1)

=
n−1∑
k=0

(N − a)k(2a−N)2(n−1−k)T log2(2
T − 1).

Thus

ET,n ≥
n−1∑
k=0

(N − a)k(2a−N)2(−1−k)T log2(2
T − 1)

=
n−1∑
k=0

(
2T − 1

2T
)k+1

[
1− (1− 1

p1
) · · · (1− 1

ph
)
]k

·
[
2(1− 1

p1
) · · · (1− 1

ph
)− 1

]
log2(2

T − 1).

Remark 3. Because p1 < p2 < ... < ph, if T is large, we have

ET,n >

n−1∑
k=0

(
2T − 1

2T
)k+1

[
1− (1− 1

ph
)h

]k

·
[
2(1− 1

p1
)h − 1

]
log2(2

T − 1)

≈
n−1∑
k=0

[
1− (1− 1

ph
)h

]k

·
[
2(1− 1

p1
)h − 1

]
log2(2

T − 1).

However, if

(1− 1
p1

) · · · (1− 1
ph

) ≤ 1
2
,

the result of Theorem 2 is meaningless.

In particular, if 2T − 1 is prime, we can get the exact value.
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Proposition 1. If 2T − 1 is prime, then the expected value ET,n of the joint
symmetric 2-adic complexity of binary sequences of period T is given by

ET,n = [1− 1
2n(T−1)

] log2(2
T − 1).

Proof. Because 2T −1 is prime, if S isn’t the all-0 sequence or the all-1 sequence,
the symmetric 2-adic complexity of S is log2(2T − 1). Hence the result follows.

4 Concluding Remarks

The linear complexity of the all-1 sequence is 1, but the 2-adic complexity of the
all-1 sequence is 0. This difference makes the computation of the expected value
of the joint 2-adic complexity of periodic binary multisequences more difficult
than that of the linear complexity case.

For the expected value of the joint symmetric 2-adic complexity, we haven’t
found a method for the exact value yet. We give a nontrivial lower bound, and the
method is just the generalization of that in [5]. In order to derive the exact value
for any T , we need to know the factorization of ST (2) and ŜT (2) simultaneously
for any binary sequence S with period T . However, in our opinion, it is a difficult
problem.

Acknowledgment

The authors wish to express their deep gratitude to the anonymous reviewers
for many helpful comments and suggestions.

References

1. A. Klapper, M. Goresky, 2-adic shift registers, in: R. Anderson (Ed. ), Fast Software
Encryption, Lecture Notes in Computer Science, Vol. 809, Springer, New York,
1994, pp. 174-178.

2. M. Goresky, A. Klapper, Feedback registers based on ramified extensions of the
2-adic numbers, Advances in Cryptology-Eurocrypt’94, LNCS, vol, 950, Springer-
Verlag, Berlin, 1995, pp. 215-222

3. M. Goresky, A. Klapper, Large periods nearly de Bruijn FCSR sequences, Advances
in Cryptology-Eurocrypt’95, LNCS, vol. 921, Springer-Verlag, Berlin, 1995, pp.
263-273

4. M. Goresky, A. Klapper, Cryptanalysis based on 2-adic rational approximation,
Advances in Cryptology-Crypt’95, LNCS, vol. 963, Springer-Verlag, Berlin, 1995,
pp. 262-273

5. H. Hu, D. Feng, On the 2-adic complexity and the k-error 2-adic complexity of
periodic binary sequences, Proceedings of SETA’04, Lecture Notes in Computer
Science 3486, Springer-Verlag, pp. 185-196, 2005

6. A. Klapper, M. Goresky, Feedback shift registers, 2-adic span, and combiners with
memory, J. Cryptology, vol. 10, pp. 111-147, 1997.



208 H. Hu, L. Hu, and D. Feng

7. R. A. Rueppel, Analysis and Design of Stream Cipher. Berlin, Germany: Springer-
Verlag, 1986

8. W. Meidl, Extended Games-Chan algorithm for the 2-adic complexity of FCSR-
sequences,Theoretical Computer Science, Volume 290, 2003, Pages 2045-2051

9. N. Koblitz, p-Adic Numbers, p-Adic Analysis, and Zeta Functions, Graduate Texts
in Mathematics, Vol. 58, Springer, New York, 1984.

10. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory
(second edition), in GTM. New York: Springer Verlag, 1990, vol. 84

11. James L. Massey, Shift-register synthesis and BCH decoding, IEEE Trans. Info.
Theory, vol. IT-15, pp. 122-127, January 1969.

12. W. Meidl, H. Niederreiter, On the expected value of the linear complexity and the
k-error linear complexity of periodic sequences, IEEE Trans. Inform. Theory 48
(2002), pp. 2817-2825.

13. W. Meidl, H. Niederreiter, The expected value of the joint linear complexity of
periodic multisequences, Journal of Complexity 19 (2003), pp. 61-72.



On the Classification of Periodic Binary

Sequences into Nonlinear Complexity Classes

George Petrides1,� and Johannes Mykkeltveit2

1 School of Mathematics, University of Manchester
P.O. Box 88, Sackville Street, Manchester M60 1QD, UK

g.petrides@maths.manchester.ac.uk
2 IRIS, International Research Institute of Stavanger

Thormohlensgt. 55, N-5008 Bergen, Norway
Johannes.Mykkeltveit@irisresearch.no

Abstract. In this paper we investigate the notion of nonlinear complex-
ity, or maximal order complexity as it was first defined in 1989 [4]. Our
main purpose is to begin classification of periodic binary sequences into
nonlinear complexity classes. Previous work on the subject also includes
approximation of the size of each class, found in [2]. Once the classification
is completed, we can use it to show how to perform checks for short cycles
in large nonlinear feedback shift registers using our proposed algorithm.

Keywords: Nonlinear complexity, nonlinear feedback shift register,
short cycles.

1 Introduction

The classical complexity measure assessing the cryptographic strength of binary
sequences used in stream ciphers is the linear complexity. It can be calculated
using the well known Berlekamp-Massey algorithm [6] and is used in statistical
tests for the randomness of sequences.

In this paper we investigate the generalised notion of nonlinear complexity (or
maximum order complexity as first introduced in [4]) which can be calculated us-
ing, for example, the directed acyclic word graph [4]. In particular, we try to clas-
sify periodic binary sequences of given period into nonlinear complexity classes.

In [2] an approximate number of sequences in each class was calculated and
used in finding the approximate probability distribution of nonlinear complexity.
Our results, though incomplete, give the exact number for the cases considered.
The cases not yet dealt with are left for future work, with the idea and method
of approach having been established.

A complete classification will be useful in the implementation of an algorithm
checking for short cycles in large nonlinear feedback shift registers (NLFSRs, see
[3] for definition). In [5] it is claimed that for a given large NLFSR it is hard
to check whether short cycles have been embedded by the given method: brute
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force is inefficient due to largeness, and so are the two algorithms which are given
for such a check, based on algebraic approach. Our proposed algorithm checks
for short cycles, regardless of whether they are embedded or not.

Another use for this classification (once complete) can be found in the con-
struction of statistical tests for the randomness of sequences, as shown for ex-
ample in [2], thus further upgrading the level of interest of nonlinear complexity
from just theoretical to also practical. For instance, we could say that a sequence
is considered random if it belongs to a large nonlinear complexity class.

We begin in Section 2 with the definition of nonlinear complexity (a name
preferred to maximum order complexity as it is more easily seen as the coun-
terpart to linear complexity). In Section 3 we attempt to classify the sequences
into nonlinear complexity classes, before presenting the algorithm checking for
short cycles in Section 4. We finish with our conclusions in Section 5.

2 Preliminaries

In this section we give the definition of nonlinear complexity and a brief discus-
sion of how to proceed in the next section.

Definition 1. A sequence s is periodic if there exists a positive integer r such
that si+r = si, for i = 0, 1, . . . , and aperiodic otherwise. The smallest such
positive integer r is called the period of s and denoted by p(s).

Definition 2. The nonlinear complexity C(s) of a periodic sequence s is the
least integer k such that all k-vectors (sq, sq+1, . . . , sq+k−1), q = 0, 1, . . . , p(s)−1
are different. Indices are reduced modulo p(s). C(s) is defined to be 1 if p(s) = 1.

We will denote by nlin(k, e) the number of binary sequences of nonlinear com-
plexity k and period e.

Definition 3. A binary necklace of length l is an equivalence class of binary
strings of length l under rotation. It is periodic if the strings it contains are
periodic, and aperiodic otherwise. In the periodic case we have that the period e
of the strings divides l and e/l > 1.

In order to classify the binary sequences of period e into nonlinear complexity
classes we have to consider a representative from each binary aperiodic necklace
of length e. This can be deduced from the fact that all members of a binary neck-
lace have the same nonlinear complexity [4]. Therefore, throughout the paper, s
will denote the repeating part of the binary periodic sequence (s0s1s2 . . . se−1)∞

of period p(s) = e. Also, all indices will be reduced modulo e.

Proposition 1. [4] For any integer e, we have that nlin(k, e) = 0, where 1 ≤
k < �log2(e)�.

The total number of binary aperiodic necklaces of length e is well known [1,7]
to be equal to the number of irreducible binary polynomials of degree e. Hence
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e∑
k=�log2(e)�

nlin(k, e) =
1
e

∑
d|e

μ
(e
d

)
2d , (1)

where μ denotes the Möbius function.
Table 1 in the Appendix tabulates the first values of nlin(e− γ, e), as found

by exhaustive search. The sum of each row is described by (1). Our aim is to
find a general formula for each individual entry of the table.

3 Determining nlin(e − γ, e)

As discussed in the previous section, consider s = s0s1s2 . . . se−1. For s to have
complexity C(s) = e − γ, where 0 ≤ γ ≤ e − �log2(e)�, it would mean, by
definition, that all (e − γ)-vectors (sq, sq+1, . . . , sq−1−γ), where 0 ≤ q ≤ e − 1,
are different, and also that at least one pair of the (e− 1− γ)-vectors

s0s1 . . . se−2−γ (S0)
s1s2 . . . se−1−γ (S1)

...
...

sisi+1 . . . si−2−γ (Si)
...

...
se−1s0 . . . se−3−γ (Se−1)

is the same (otherwise, if none are equal we would have C(s) ≤ e−1−γ, and if a
triplet or more are equal, we would have that at least two of the (e− γ)-vectors
are equal and so C(s) ≥ e+ 1− γ).

Without loss of generality, we consider the e− 1 cases of (S0) being the same
as (Si), 1 ≤ i ≤ e− 1:

(S0) = (S1) ⇒ s0 = s1, s1 = s2, . . . , se−2−γ = se−1−γ

(S0) = (S2) ⇒ s0 = s2, s1 = s3, . . . , se−2−γ = se−γ

...
...

(S0) = (Si) ⇒ s0 = si, s1 = si+1, . . . , se−2−γ = si−2−γ

...
...

(S0) = (Se−1)⇒ s0 = se−1, s1 = s0, . . . , se−2−γ = se−3−γ

Now, suppose (S0) = (Si) for some 1 ≤ i ≤ e− 1. To ensure that the (e− γ)-
vectors (s0s1 . . . se−1−γ) and (sisi+1 . . . si−1−γ) are different, we must also have
that se−1−γ 
= si−1−γ .

Similarly, for the (e− γ)-vectors (se−1, s0, s1, . . . , se−2−γ) and
(si−1, si, si+1, . . . , si−2−γ) to be different, we need se−1 
= si−1.

When γ = 0, there is only one inequality, namely se−1 
= si−1. However, as
sj = sj+i, where 0 ≤ j ≤ e− 2, and i− 1 < e− 1 we have

si−1 = si+i−1 = s2i−1 = . . . = ski−1 ,
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for some k ∈ N. Now, if we let gcd(e, i) = d then, when k = e
d we have

si−1 = s e
d i−1 = s i

d e−1 = se−1 ,

a contradiction. We have thus provided an alternative proof of the following
proposition.

Proposition 2. [4] nlin(e, e) = 0 .

In the sequel we will consider fixed i and γ such that 1 ≤ i ≤ e − 1 and
1 ≤ γ ≤ e− �log2(e)�.

For γ > 1, no relations between se−t and si−t, γ ≥ t ≥ 2, are imposed and
thus we can have all possible combinations of equalities and inequalities. The
only constraint is that we have to have an even number of inequalities, otherwise
we would reach a contradiction, as in the case γ = 0. However, as will be seen in
Proposition 6, this constraint is a necessary but not sufficient condition to avoid
such a contradiction.

The total number of possibilities for the choice of relations is

� γ−1
2 	∑

k=0

(
γ − 1
2k

)
= 2γ−2 .

Our approach will be to view the relations between st and si+t, 0 ≤ t ≤ e− 1
in each recursion as a binary vector v of length e, where a 0 would denote an
equality and a 1 an inequality. It is obvious that these vectors are of even parity
(that is they have an even number of 1’s) and we have

si+t = st ⊕ vt .

We will call such a vector v the relating vector of the recursion Rv(e, i). The set
of all 2γ−2 possible relating vectors for a given e and γ will be denoted by Ve,γ .
If v is of the form

v = 0 . . . 01 0 . . . 0︸ ︷︷ ︸ 1

γ − 1
,

which means we only have equalities, then Rv(e, i) is the same as R(e, i, γ) of
Definition 4. Note that with this notation the case γ = 1 is now also covered.

Definition 4. By recursion R(e, i, γ) we mean the following list of relations
between the digits of a sequence s of length e:

sj = si+j , se−1−γ 
= si−1−γ , se−1 
= si−1 ,

where j ∈ {0, . . . , e− 2} \ {e− 1− γ}.

Definition 5. Two sequences of length e are cyclically inequivalent if they do
not belong to the same binary necklace.

Definition 6. S(Rv(e, i)) is the set of cyclically inequivalent sequences which
satisfy recursion Rv(e, i) and |S(Rv(e, i))| denotes its cardinality.
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Definition 7. S(Rv(e, i), δ) is the set of cyclically inequivalent sequences of
nonlinear complexity δ which satisfy recursion Rv(e, i) and |S(Rv(e, i), δ)| de-
notes its cardinality.

Using the definition above, we can now relate nlin(e−γ, e) and recursionsRv(e, i)
in the following obvious theorem.

Theorem 1. nlin(e− γ, e) =
∑

v∈Ve,γ

e−1∑
i=0

|S(Rv(e, i), e− γ)| .

Proposition 3. Let v1, . . . , vγ be the relating vectors of recursions R(e, i, 1),
. . . , R(e, i, γ) respectively. Then, the relating vectors in Ve,γ are obtained from
all possible sums of vγ with an even number of vectors vz, where z ∈ {1 . . . γ−1}.

Proof. All vectors v1, . . . , vγ have a 1 in the (e− 1)th position, and since there’s
an odd number of them in each sum, the resulting vector will also have a 1 in
the (e− 1)th position. Also, the (e− γ − 1)th position will also be a 1 due to vγ .
The remaining positions will depend on which vz , where z ∈ {1 . . . γ− 1}, are in
the sum: the (e− z − 1)th positions will be a 1 and the rest will be 0. ��

Theorem 2. Consider the recursion Rv(e, i) and suppose that v = v0⊕v1⊕. . .⊕
vl ∈ Ve,γ , where v0 and vk are the relating vectors of the recursions R(e, i, γ0 = γ)
and R(e, i, γk) respectively, 1 ≤ k ≤ l, l is even and γk < γ ∀k. Let s0, sk be
sequences satisfying these recursions respectively. Then the sequence s = s0 ⊕
s1 ⊕ . . .⊕ sl ∈ S(Rv(e, i)).

Proof. We have that sm = sm
0 . . . sm

e−1, v
m = vm

0 . . . vm
e−1 and sm

n+i = sm
n ⊕ vm

n ,
where 0 ≤ m ≤ l, 0 ≤ n ≤ e− 1. Therefore,

sn+i =
l⊕

m=0

sm
n+i =

l⊕
m=0

(sm
n ⊕ vm

n ) =
l⊕

m=0

sm
n

l⊕
m=0

vm
n = sn ⊕ vn .

��

Proposition 3 together with Theorem 2 above suggests that we only need to
investigate recursions R(e, i, γ) and sums of sequences satisfying them.

3.1 The Recursions R(e, i, γ)

In this subsection we study the properties of the recursions R(e, i, γ). In the way
we defined them, we have not imposed any conditions to exclude the case of a
third (e− γ − 1)-vector being equal to the other two. In that case, since we are
working in binary, at least two of the (e − γ)-vectors would be the same and
therefore the nonlinear complexity of the sequence greater than (e− γ). Hence
the following two results are immediate.

Proposition 4. S(R(e, i, γ), e− γ) ⊆ S(R(e, i, γ)) .
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Corollary 1. |S(R(e, i, γ))| =
γ∑

d=1

|S(R(e, i, γ), e− d)| .

Definition 8. Given m such that 0 ≤ m ≤ e − 1, the recursion Rm(e, i, γ) is
the following list of relations between the digits of a sequence s of length e:

sj = si+j , sm−1−γ 
= si−1−γ+m, sm−1 
= si−1+m ,

where j ∈ {0, . . . , e− 1} \ {m− 1− γ,m− 1}.

The recursion Rm(e, i, γ) corresponds to the case (Sm) = (Sm+i) (as compared
to (S0) = (Si) for recursion R(e, i, γ)). It has as relating vector the m-digits
cyclic shift of the relating vector for R(e, i, γ).

Proposition 5. Let sequence s = s0s1 . . . se−2se−1 ∈ S(R(e, i, γ)). Then its
m-digits right cyclic shift s′ = se−mse−m+1 . . . se−m−2se−m−1 ∈ S(Rm(e, i, γ)).

Proof. Obvious. ��

It is a consequence of Proposition 5 that recursions R(e, i, γ) and Rm(e, i, γ),
where 0 ≤ m ≤ e− 1, share the same properties.

Definition 9. We will call two recursions equivalent (denoted by ∼) if the se-
quences they define belong to the same binary necklace.

Lemma 1. R(e, i, γ) ∼ R(e, i, e− γ).

Proof. Let sequence s = s0s1 . . . se−2se−1 ∈ S(R(e, i, γ)). By Proposition 5,
its γ-digits right cyclic shift s′ = se−γse−γ+1 . . . se−γ−2se−γ−1 ∈ S(Rγ(e, i, γ)),
where the recursion Rγ(e, i, γ) is the following list of relations between the digits
of a sequence s of length e:

sj = si+j , sγ−1−γ = se−1 
= si−1−γ+γ = si−1, sγ−1 
= si−1+γ ,

where j ∈ {0, . . . , e− 1} \ {e− 1, γ − 1}. This is exactly R(e, i, e− γ). ��

Lemma 2. R(e, i, γ) ∼ R(e, e− i, γ).

Proof. Let sequence s = s0s1 . . . se−2se−1 ∈ S(R(e, i, γ)). By Proposition 5, its
(e − i)-digits right cyclic shift s′ = sisi+1 . . . si−2si−1 ∈ S(Re−i(e, i, γ)), where
the recursion Re−i(e, i, γ) is the following list of relations between the digits of
a sequence s of length e:

sj = si+j , si−1−γ+e−i = se−1−γ 
= se−i−1−γ , si−1+e−i = se−1 
= se−i−1 ,

where j ∈ {0, . . . , e− 1} \ {e− 1− γ, e− 1}. This is exactly R(e, e− i, γ). ��

Combining the results of the lemmas above we come to the following corollary:

Corollary 2

R(e, i, γ) = Ri(e, e− i, γ) = Re−γ(e, i, e− γ) = Ri−γ(e, e− i, e− γ) .
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By Proposition 2 and Corollary 2 we deduce that in the sequel, for each e we have
to look only at the distinct recursions R(e, i, γ) for 1 ≤ i, γ ≤

⌊
e
2

⌋
. Proposition

6 below limits them further to those such that gcd(e, i) | γ.
Given a positive integer n, we will denote by Div(n) the set of divisors of n

and by Div∗(n) the set Div(n) \ {n}.

Proposition 6. If gcd(e, i) 
∈ Div(γ), then |S(R(e, i, γ))| = 0.

Proof. R(e, i, γ) is given by

sj = si+j , se−1−γ 
= si−1−γ , se−1 
= si−1 ,

where j ∈ {0, . . . , e−2}\{e−1−γ}. Let gcd(e, i) = g. Then, there exist x, y ∈ N

such that i = xg and e = yg.
First we observe that for i 
= γ, by definition of R(e, i, γ) we have

si−γ−1 = si+i−γ−1 = s2i−γ−1 = . . . = sk1i−γ−1 ,

for some k1 ∈ N. In the case i = γ we just have se−1 
= sγ−1 .
Also,

si−1 = si+i−1 = s2i−1 = . . . = sk2i−1 ,

for some k2 ∈ N. Now, when k1 = e
g we obtain

si−γ−1 = s e
g i−γ−1 = s i

g e−γ−1 = se−γ−1

and when k2 = e
g

si−1 = s e
g

i−1 = s i
g e−1 = se−1 ,

both contradicting the definition of R(e, i, γ).
So, what we need to avoid the contradiction is to find k1, k2 <

e
g such that

k1i− γ − 1 ≡ e− 1 and k2i− 1 ≡ e− γ − 1 .

In that case we would have

si−γ−1 = . . . = se−1 
= si−1 = . . . = se−γ−1 ,

satisfying both inequalities.
Now, if k1i− γ − 1 ≡ e− 1, then we would have

k1i ≡ γ mod e⇒ k1i = k3e+ γ
⇒ k1xg = k3yg + γ
⇒ g(k1x− k3y) = γ ,

for some k3 ∈ N.
Similarly, if k2i− 1 ≡ e− γ − 1, then

k2i ≡ e− γ mod e⇒ k2i = k4e− γ
⇒ k2xg = k4yg − γ
⇒ g(k4y − k2x) = γ ,
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for some k4 ∈ N.
Since all of g, k1x − k3y and k4y − k2x ∈ N, the only possible way these

equalities can hold is when g is a divisor of γ. Otherwise, for g 
∈ Div(γ), we
have that se−γ−1 = si−γ−1 and se−1 = si−1, contradicting the definition of
R(e, i, γ) and as a result |S(R(e, i, γ)| = 0. ��
Proposition 7. Let gcd(e, i) = g. If g ∈ Div(γ), then

|S(R(e, i, γ))| =
{

2g if e 
= 2γ
2g−1 if e = 2γ .

Proof. I. Let gcd(e, i) = g. R(e, i, γ) is given by

sj = si+j , se−1−γ 
= si−1−γ , se−1 
= si−1 ,

where j ∈ {0, . . . , e− 2} \ {e− 1− γ}. This gives

s0 = . . . = ski = . . . = se−i ,
s1 = . . . = ski+1 = . . . = se−i+1 ,
...

...
...

sg−2 = . . . = ski+g−2 = . . . = se−i+g−2 ,
where k ∈ Z∗, and also

si−1 = . . . = se−γ−1 
= si−γ−1 = . . . = se−1 ,

(2)

as seen in the proof of Proposition 6. The above form of representing the re-
cursion will be called its structure. There are 2 possibilities for each line and so
|S(R(e, i, γ))| = 2g.

II. e = 2γ means that 1 ≤ i ≤ γ. We use the same reasoning as in I. However,
due to Corollary 2, for each sequence we obtain we will also obtain its γ-digits
cyclic shift. Therefore, |S(R(e, i, γ))| = 2g−1. ��
Proposition 7 tells us that when e = 2γ we have two repeating (e−1−γ)-vectors:
(S0) = (Si) and (Sγ) = (Sγ+i). In addition, when g = 1, S(R(e, i, γ)) contains
the self-complementary sequences.

Conjecture 1. For all γ, i and i′ such that 0 ≤ γ, i, i′ ≤
⌊

e
2

⌋
, i 
= i′ and for all m

such that 0 ≤ m ≤ e− 1, we have that

S(R(e, i, γ)) ∩ S(Rm(e, i′, γ)) = ∅ .

Theorem 3. Let gcd(e, i) = g. If g ∈ Div(γ), then

|S(R(e, i, γ), e− γ)| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
d|g

μ(d)2g/d if g = i = γ < e
2∑

d|g

(
μ(d)2g/d

)
− 2g−1 if g = i = γ = e

2

0 if g < i = γ
2g if g, γ < i and γ < e

2
2g−1 if i 
∈ Div(γ) and γ = e

2

,

where μ denotes the Möbius function.
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Remark 1. The present version of Theorem 3 does not cover the following cases,
left for future work: g = i < γ, g < i ∈ Div∗(γ) and g < i < γ with i 
∈ Div∗(γ).

Proof. I. Let e > 2γ and gcd(e, γ) = γ. By Proposition 7 R(e, γ, γ) gives

s0 = . . . = sk1γ = . . . = se−γ ,
s1 = . . . = sk1γ+1 = . . . = se−γ+1 ,
...

...
...

sγ−2 = . . . = sk1γ+γ−2 = . . . = se−2 ,
sγ−1 = . . . = se−γ−1 
= se−1 , where k1 ∈ Z∗ .

(3)

Now, consider d ∈ Div∗(γ). We have that gcd(e, d) = d and R(e, d, d) is given
by

s0 = . . . = sk2d = . . . = se−γ = . . . = se−d ,
s1 = . . . = sk2d+1 = . . . = se−γ+1 = . . . = se−d+1 ,
...

...
...

...
sd−2 = . . . = sk2d+d−2 = . . . = sγ−2 = . . . = se−2 ,
sd−1 = . . . = se−γ−1 = . . . = se−d−1 
= se−1 , where k2 ∈ Z∗ .

(4)

We can see that the set {k2d + q} contains the set {k1γ + q + pd}, where
0 ≤ q ≤ d−1, 0 ≤ p ≤ γ

d−1 and k1, k2 ∈ Z∗. Therefore, the sequences satisfying
R(e, d, d) also satisfy R(e, γ, γ) (splitting each line of (4) in γ

d parts, we obtain
(3)). Since |S(R(e, d, d), e− ε)| = 0 when ε > d and Div∗(d) ⊂ Div∗(γ), we are
only interested in S(R(e, d, d), e− d) for each d ∈ Div∗(γ).

Hence, by Corollary 1 and Proposition 7,

|S(R(e, γ, γ), e− γ)| = 2γ −
∑

d∈Div∗(γ)

|S(R(e, d, d), e− d)| . (5)

Rearranging gives

2γ =
∑

d∈Div(γ)

|S(R(e, d, d), e− d)| . (6)

Now, applying the Möbius Inversion Formula (see e.g. [1]) to (6), we obtain

|S(R(e, γ, γ), e− γ)| =
∑

d∈Div(γ)

μ(d)2γ/d , (7)

where μ denotes the Möbius function.
II. Let e = 2γ. We start by following the same arguments as the proof above

and so, by Proposition 7, we have

|S(R(e, γ, γ), e− γ)| = 2γ−1 −
∑

d∈Div∗(γ)

|S(R(e, d, d), e− d)| . (8)
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Now, since d < γ = e
2 , we know from (7) that

|S(R(e, d, d), e− d)| =
∑

d′∈Div(d)

μ(d′)2d/d′
.

By the Möbius Inversion Formula∑
d∈Div(γ)

∑
d′∈Div(d)

μ(d′)2d/d′
= 2γ ,

and therefore (8) becomes

|S(R(e, γ, γ), e− γ)| = 2γ−1 − 2γ +
∑

d∈Div(γ)

(
μ(d)2γ/d

)
=

∑
d∈Div(γ)

(
μ(d)2γ/d

)
− 2γ−1 .

III. Let gcd(e, γ) = g ∈ Div∗(γ). R(e, γ, γ) gives

s0 = . . . = sk1γ = . . . = se−γ ,
s1 = . . . = sk1γ+1 = . . . = se−γ+1 ,
...

...
...

sg−2 = . . . = sk1γ+g−2 = . . . = se−γ+g−2 ,
sγ−1 = . . . = sk1γ+γ−1 = . . . = se−γ−1 
= se−1 ,where k1 ∈ Z∗ .

(9)

Since γ > g, we have that γ = gx, for some x > 1. Therefore, sk1γ+q = sk1gx+q =
sk2g+q , where 0 ≤ q ≤ g − 2 and k1, k2 ∈ Z

∗. Similarly sk1γ+γ−1 = sk2g+gx−1.
Hence, each line of (9) is just a rearrangement of a line obtained by recursion
R(e, g, g) for which |S(R(e, g, g), e− ε)| = 0, when ε > g.

IV. Let gcd(e, i) = g. We have g < i and i > γ. R(e, i, γ) gives (2). None of the
combinations yield a different recursion and so by Proposition 7, |S(R(e, i, γ),
e− γ)| = 2g.

V. Let gcd(e, i) = g < i. The case we have is γ > i 
∈ Div(γ). R(e, i, γ) gives
(2) and by Proposition 7 we get |S(R(e, i, γ), e− γ)| = 2g−1.

��

The next theorem follows from Theorems 1 and 3.

Theorem 4. nlin(e− 1, e) = φ(e), where φ(n) is Euler’s totient function.

3.2 The Recursions Rv(e, i).

We have already studied recursions Rv(e, i) = R(e, i, γ), that is when the relat-
ing vector v has only two 1′s, in the previous subsection. By Proposition 3 and
Theorem 2, studying the rest of the cases is equivalent to investigating the prop-
erties of sums of sequences satisfying recursions R(e, i, γ). Doing this is further
work.
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4 An Algorithm Checking for Short Cycles in Large
Nonlinear Feedback Shift Registers

In this section we present our proposed algorithm that checks for short cycles in
large NLFSRs. A cycle is the periodic part of a sequence generated by a NLFSR.
Every NLFSR is described by its nolinear recursion.

Definition 10. A recursion sn = f(s0, s1, . . . , sn−1) is irreducible if all se-
quences it generates have complexity n, and reducible otherwise. We say it is
of order n.

Jansen [4] defined the maximum order complexity of s as the length of the short-
est Feedback Shift Register that generates s. We relate to this in the following:

Definition 11. The minimum recursion MinR(s) for s is the recursion of order
C(s) and with the fewest binary operations that generates s.

Finally, we let τ(e) denote the total number of cycles of period ≤ e.

4.1 Algorithm Check Sh

The algorithm takes the following two items of input data:

1. An array L of all sequences of period ≤ e, e a given parameter:

L = ((0, s0), (1, s0), (0, s0), (01, s0 ⊕ s1), . . . ,(
sq
0s

q
1 . . . s

q
C(sq)−1,MinR (sq)

)
, . . . ,(

s
τ(e)
0 s

τ(e)
1 . . . s

τ(e)

C(sτ(e))−1
,MinR

(
sτ(e)

))
) .

where sa is the complement of sa, that is sa = sa ⊕ 1.
2. The recursion sn = f(s0, s1, · · · , sn−1) to be checked for short cycles.

Each element in L is a pair, the left member being a binary vector of length C(s)
contained in the sequence s, and the right member being the minimum recursion
for s. Obviously such a pair defines s uniquely. For example, the first member in
the list is the all zero sequence, satisfying sm+1 = sm with s0 = 0. The second
is the all one sequence, the third is 0101 . . . , and the fourth 011011 . . . , which
satisfies sm+2 = sm ⊕ sm+1 with s0 = 0 and s1 = 1.

The main function of the algorithm is the following:

Set q = 1. While q ≤ τ(e) do
1. Read the qth member of L, L(q) =

(
sq
0s

q
1 . . . s

q
C(sq)−1,MinR (sq)

)
.

2. Generate the whole period of the sequence sq
0s

q
1 . . . s

q
e(sq)−1 .

3. If sq
n+h = f

(
sq

h, s
q
h+1, . . . , s

q
n+h−1

)
, h = 0, 1, . . . , e (sq) − 1, then quit

Check Sh with the result that f(s0, s1, . . . , sn−1) is reducible. It generates
the qth member in L (we assume that n is greater than C(sq) for all (sq) in
L) . Otherwise increase q by one.

End Check Sh with the result that f(s0, s1, . . . , sn−1) does not generate cycles
of period ≤ e.
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4.2 Implementing the Algorithm

By definition, the size of L is τ(e). However, when checking recursion sn =
f(s0, s1, · · · , sn−1) for short cycles, we only want to go through those sequences
s in L that have complexity C(s) < n. Therefore the ”effective” size of L is

|L| =
emax∑
e=2

n−1∑
k=�log2(e)�

nlin(k, e) ,

where emax is the largest period considered in L. Since our purpose is to check for
short cycles, we will be looking at a reasonable, from a computational complexity
aspect, value for emax (≈ 30).

Definition 12. The repeativity of a cycle s, denoted by R(s), is defined as the
number of (C(s)− 1)-vectors of s which are repeated.

Theorem 5. The probability that recursion sn = f(s) = F (s1, s2, . . . , sn−1)⊕s0
generates a sequence of period e(s), complexity C(s) and repeativity R(s) is:

P(s) =

⎧⎨⎩
2−e(s) if C(s) < n

2R(s)−e(s) if C(s) = n
0 if C(s) > n

.

Proof. There are 22n−1
different F ’s. In the case C(s) < n, s determines

F (s1, s2, . . . , sn−1) for e digits of (s1, s2, . . . , sn−1), leaving 2n−1 − e digits to
be chosen arbitrarily. In other words, the fraction of all possible F ’s which gen-
erate s is 2n−1−e

2n−1 = 2−e as required.
In the case C(s) = n, R(s) (n− 1)-vectors occur twice in s. Therefore, if we

denote by D(s) the number of different (n− 1)− vectors occurring in s, we have
e(s) = D(s) +R(s). This gives

P(s) =
22n−1−D(s)

22n−1 =
22n−1+R(s)−e(s)

22n−1 = 2R(s)−e(s) .

Finally, f(s) cannot generate a sequence s with C(s) > n. ��

To optimise the algorithm, we should reorder the sequences in L in a way that
P(s) does not increase. Furthermore, this version of the algorithm is not optimal
if f(s0, s1, · · · , sn−1) has a symmetry. For example, if sn = f(s0, s1, . . . , sn−1) is
mapped onto itself if we replace sq with sq (self-complementary), if we replace
sq with sn−q (reversible) or a combination of both, where 0 ≤ q ≤ n. For
example, s2 = s1 ⊕ s0 is reversible, and s2 = s0 is both self-complementary and
reversible. These symmetries define equivalence classes of sequences. In these
cases a more optimal algorithm would be to include in L one representative for
each equivalence class.

Nevertheless, the biggest difficulty in generating L lies in obtaining MinR(s)
for each sequence s. The corresponding register synthesis with the fewest number
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of terms (not fewest binary operations as we want) proposed in [4] is of order
2e2 log2(e), where e is the length of s.

It is a problem for further research to try to reformulate the algorithm in such
a way that we do not need MinR. We may for instance let the algorithm which
generates L be reentrant and let Check Sh call it each time it needs new bits
of the short sequence it is working on.

5 Conclusions

In this paper we have commenced the classification of periodic binary sequences
into nonlinear complexity classes. Not all cases have been covered but our results
and methodology suggest a way forward. Finally, we have presented an algorithm
that performs checks for short cycles in large Nonlinear Feedback Shift Registers.
Its implementation and efficiency depend on the above mentioned classification.

Acknowledgements. The first author would like to thank the Marie Curie Fel-
lowship Scheme of the European Union and Professor Tor Helleseth for making
his visit to the University of Bergen in Norway possible and his stay enjoyable.
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Abstract. We derive a formula for the minimal polynomial of the
termwise product of binary sequences of least periods 2N − 2. The
obtained results are important in the analysis of keystream generators
based on binary nonlinear N-stage feedback shift registers producing se-
quences of period 2N −2. Sequences of period 2N −1 are also considered.

Keywords: Periodic sequences, minimal polynomial, nonlinear feed-
back shift registers.

1 Introduction

A fundamental problem in the theory of stream ciphers is the determination of
the linear complexity of keystreams. In many practical stream ciphers binary
feedback shift registers and Boolean combining functions serve as building blocks.
Oftentimes linear feedback shift registers (LFSRs) with primitive characteristic
polynomials are employed. When started in any nonzero initial state, these shift
registers will produce so-called m-sequences, which are sequences of least period
2N − 1, where N is the length of the shift register (see e.g. Golomb [9] or Gong
and Golomb [10]). The downside of an LFSR is that its next-state function,
which maps the state of the register at time t into the state at time t + 1,
is—as the name suggests—linear. This fact makes systems relying on LFSRs
potentially vulnerable to algebraic attacks (see [2], [3], [18]).

An approach to counteract algebraic attacks at the root (and to lower hard-
ware costs at the same time) is to use nonlinear feedback shift registers (NLFSRs)
instead. Here the next state function is a nonlinear mapping from F

N
2 into itself,

where N is the length of the shift register. In order to facilitate the analysis of
combined nonlinear feedback shift register sequences, the underlying NLFSRs
should have a simple cycle structure. The simple cycle structure of the shift
register is often accompanied with a simple algebraic structure of the minimal
polynomial of the produced shift register sequence.

The nonlinear counterparts of LFSRs producing m-sequences are N -stage
NLFSRs which produce binary sequences of least period 2N−1 for every nonzero
initial state. These shift registers were called primitive in [6]. A stream cipher
deploying several primitive NLFSRs and a suitable Boolean combining function
was recently proposed by Gammel, Göttfert, and Kniffler [7].
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We mention some prior work: The minimal polynomial of a sequence ζ derived
from combining the nonzero output sequences σ1, . . . , σd of several primitive
binary NLFSRs of pairwise relatively prime lengths, using an arbitrary Boolean
combining function F : Fd

2 → F2, is uniquely determined and its degree, the
linear complexity of ζ, can be expressed by the formula

L(ζ) = F ∗(L(σ1), . . . , L(σd)). (1)

Here L(σi) is the linear complexity of the sequence σi for 1 ≤ i ≤ d. The function
F ∗ is formally identical with the algebraic normal form of F but is regarded as an
element of Z[x1, . . . , xd]. This result is implicitly already contained in Rueppel
and Staffelbach [24, Corollary 6]. Formula (1) is also an implication of Golić [8,
Theorem 5]. A formula for the minimal polynomial of the sequence ζ was derived
by Gammel and Göttfert in [6, Theorem 3]. The case that the lengths of the
primitive NLFSRs are distinct—but no longer pairwise relatively prime—was
dealt with in [7].

In this paper we investigate the case of binary N -stage NLFSRs capable to
produce sequences of least period 2N − 2. Like in the 2N − 1 case, the output
sequences of such shift registers have almost ideal k-tuple distribution for all
1 ≤ k ≤ N . Furthermore the elements 0 and 1 are equidistributed over a full
portion of the period.

We can distinguish two types of N -stage binary shift registers producing se-
quences of least period 2N − 2. The first type fixes the all-zero state of the
register and the all-one state. The shift register has three different cycles. There
is a one-to-one correspondence between these shift registers and binary span N
De Bruijn sequences. This correspondence shows that there are

22N−1−N

shift registers of the first type (see De Bruijn [1]). The second type of shift regis-
ter has two different cycles. The short cycle contains the two states (0, 1, 0, . . . )
and (1, 0, 1, . . . ). The long cycle contains all the remaining 2N − 2 states. The
number of these shift registers is given by

1
3
(
2N−2 + (−1)N−1

)
22N−1−2N+2,

as was shown by Fredricksen [5].
At the present time there is no algorithm known to produce the mentioned

NLFSRs (with a reasonably sparse feedback function) efficiently. Using a heuris-
tic search method, the authors of [7] are currently able to produce such shift reg-
isters up to the length 35. These lengths are sufficient for the design of stream
ciphers with 128-bit security.

Over the finite field F2 the effect of a Boolean combining function on individ-
ual sequences reduces to two simpler problems: termwise addition of sequences
and termwise multiplication of sequences. Since termwise addition of periodic se-
quences is comparatively easy to analyze, we focus our attention to the termwise
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product of sequences. Although we are primarily interested in output sequences
of binary N -stage NLFSRs, we prove the results for arbitrary binary sequences
of least periods 2N − 1 and 2N − 2. It suffices to treat the product of two se-
quences, as we can then proceed by induction to obtain results on the product
of any finite number of sequences.

2 The Case Per(σ) = 2M − 1 and Per(τ) = 2N − 1

Proposition 1. Let σ = (sn)∞n=0 be a periodic binary sequence of least period
2M − 1. Then the minimal polynomial of σ is the product of distinct binary
irreducible polynomials 
= x whose degrees divide M .

Proof. The minimal polynomial mσ of σ divides the polynomial xp − 1, where
p = 2M − 1. The polynomial xp − 1 is the product of all binary polynomials f
with deg(f) divides M and f(0) 
= 0. ��
We recall some results of Selmer [25, Chap. 4]. Let f and g be nonconstant
polynomials over Fq without multiple roots and with nonzero constant terms.
Then f ∨ g is defined to be the monic polynomial whose roots are the distinct
elements of the form αβ, where α is a root of f and β is a root of g. The
polynomial f ∨ g is again a polynomial over Fq. This follows from the fact that
all conjugates over Fq of a root of f ∨ g are roots of f ∨ g. The following lemma
is due to Selmer.

Lemma 1. Let f and g be nonconstant polynomials over Fq without multiple
roots and with nonzero constant terms. The polynomial f ∨ g ∈ Fq[x] is irre-
ducible if and only if the polynomials f and g are both irreducible and of pairwise
relatively prime degrees. In this case, deg(f∨g) = deg(f) deg(g). If σ = (sn)∞n=0

and τ = (tn)∞n=0 are periodic sequences of elements of Fq with irreducible mini-
mal polynomials f and g of pairwise relatively prime degrees, then f ∨ g is the
minimal polynomial of στ = (sntn)∞n=0.

Proof. See Selmer [25, Chap. 4]. ��
Theorem 1. Let σ = (sn)∞n=0 and τ = (tn)∞n=0 be binary periodic sequences of
least periods 2M − 1 and 2N − 1, respectively. Let the canonical factorizations
over F2 of the minimal polynomials of σ and τ be given by mσ =

∏r
i=1 fi and

mτ =
∏s

j=1 gj, respectively. If gcd(M,N) = 1, then the minimal polynomial of
the product sequence στ = (sntn)∞n=0 is given by

mστ =
r∏

i=1

s∏
j=1

(fi ∨ gj). (2)

In fact, (2) is the canonical factorization of the minimal polynomial of στ .

Proof. The proof is a straightforward application of Proposition 3A in Ap-
pendix A and of Lemma 1. The hypothesis gcd(M,N) = 1 guarantees that
the rs irreducible polynomials fi ∨ gj , 1 ≤ i ≤ r, 1 ≤ j ≤ s, are distinct. For
more details see [6, Lemma 7]. ��
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3 The Case Per(σ) = 2M − 2 and Per(τ) = 2N − 1

Proposition 2. Let σ = (sn)∞n=0 be a binary periodic sequence of least period
2M − 2. The canonical factorization of mσ, the minimal polynomial of σ, in
F2[x] has the form mσ =

∏r
i=1 f

ei

i , where the fi are distinct irreducible binary
polynomials with deg(fi) divides M − 1 and fi(0) 
= 0. The exponents ei satisfy
1 ≤ ei ≤ 2. At least one exponent ei is 2.

Proof. Consider the characteristic polynomial of σ:

x2M−2 − 1 = (x2)2
M−1−1 − 1 =

∏
f(x2) =

∏
f(x)2,

where the two products are extended over all irreducible binary polynomials
f with f(0) 
= 0 whose degrees divide M − 1. Since the minimal polynomial
of σ divides any characteristic polynomial of σ, it must have the form mσ =∏r

i=1 f
ei

i with ei ∈ {1, 2} for all i. It remains to show that at least one ei

is equal to 2. Assume to the contrary that all ei are 1. Then ord(mσ) =
lcm(ord(f1), . . . , ord(fr)) (see [16, p. 84f]). Since ord(fi) divides 2M−1 − 1 for
1 ≤ i ≤ r, it follows that ord(mσ) divides 2M−1 − 1. However, the order of the
minimal polynomial of σ is equal to the least period of σ which is 2M − 2, a
contradiction. ��

Theorem 2. Let σ = (sn)∞n=0 be a binary periodic sequence of least period 2M−
2, and let τ = (tn)∞n=0 be binary periodic sequences of least period 2N − 1. Let
the canonical factorizations over F2 of the minimal polynomials of σ and τ be
given by mσ =

∏r
i=1 f

ei

i and mτ =
∏s

j=1 gj, respectively. If gcd(M − 1, N) = 1,
then the minimal polynomial of the product sequence στ = (sntn)∞n=0 is given by

mστ =
r∏

i=1

s∏
j=1

(fi ∨ gj)ei . (3)

In fact, the formula represents the canonical factorization of the minimal poly-
nomial of στ .

Before we can proof the theorem we need some auxiliary results. Let f be
a polynomial over F2 with deg(f) = d ≥ 1. We define M(f) to be the set
of all periodic binary sequences with minimal polynomial f . We use S(f) to
denote the set of all binary sequences with characteristic polynomial f . Under
termwise operations on sequences, S(f) is a vector space over F2 of dimension
d. Clearly, M(f) ⊆ S(f). If f is irreducible then S(f) = M(f) ∪ {0}, where
0 = (0, 0, . . . ) is the zero sequence. In the the following, (n) denotes the binary
sequence (n)∞n=0 = (0, 1, 0, . . . ). Likewise, (n + 1) denotes the binary sequence
(n+ 1)∞n=0 = (1, 0, 1, . . . ).

Lemma 2. Let f be a nonzero binary polynomial without multiple roots and with
a nonzero constant term. If σ = (sn)∞n=0 is a binary periodic sequence with mini-
mal polynomial f , then (n)σ = (nsn)∞n=0 and (n+1)σ = ((n+1)sn)∞n=0 are binary
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periodic sequences with minimal polynomial f2. Furthermore, if h/f ∈ F2(x) is
the rational generating function of σ in its reduced form (see Appendix A), then
the rational generating function of (n)σ and (n+ 1)σ in their reduced forms are
given by

hf + x(hf)′

f2
and

x(hf)′

f2
,

respectively, where (hf)′ stands for the formal derivative of the polynomial hf .

Proof. Consider the generating function of σ (see Appendix A):

s0x
−1 + s1x

−2 + s2x
−3 + · · · = h

f
.

We differentiate both sides and multiply the result by x. This yields

s0x
−1 + s2x

−3 + s4x
−5 + · · · = x(h′f − hf ′)

f2
.

By adding the first equation to the second we obtain

s1x
−2 + s3x

−4 + s5x
−6 + · · · = hf + x(hf)′

f2
, (4)

which is the generating function of (n)σ. The numerator of the fraction on the
right-hand side of (4) has the form gf + xhf ′, where g = h + xh′. Thus the
fraction is in reduced form if and only if gcd(f, xhf ′) = 1. The latter is true
since, by hypothesis, we have f(0) 
= 0, σ ∈M(f), and f has no multiple roots.
These facts imply that f is not divisible by x, gcd(f, h) = 1, and gcd(f, f ′) = 1.
It follows that (n)σ ∈M(f2). The claims concerning the sequence (n+ 1)σ are
proved similarly. ��

There are two fundamental linear operators on the F2-vector space V = F∞
2 .

The shift operator T defined by Tσ = (sn+1)∞n=0 and the decimation operator
D defined by Dσ = (s2n)∞n=0 for all σ = (sn)∞n=0 in V . If f is any nonzero
polynomial over F2, then f(T ) is again a linear operator on V . We can write
S(f) = {σ ∈ V : f(T )σ = 0}.

One readily checks that S(f) is closed under the actions of T and D. That
is, Tσ ∈ S(f) and Dσ ∈ S(f) whenever σ ∈ S(f). Thus, T and D are linear
operators on the finite dimensional F2-vector space S(f). Moreover, T is an
automorphism of S(f) if and only if the polynomial f is not divisible by x, and
D is an automorphism of S(f) if and only if f has no multiple roots. For more
information on the decimation operator, we refer to Niederreiter [22], [23].

Lemma 3. Let f be a binary irreducible polynomial not equal to x, and let
σ, τ ∈ S(f). The following statements are equivalent: (i) σ = τ , (ii) Tσ = Tτ ,
(iii) Dσ = Dτ , (iv) DTσ = DTτ .

Proof. This follows from the fact that T and D are automorphisms of S(f) if f
is irreducible with f(0) 
= 0. ��
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Lemma 4. Let f be a binary irreducible polynomial not equal to x. For each
σ ∈ M(f2) there are uniquely determined sequences σ0 ∈ S(f) and σ1 ∈ M(f)
such that σ = σ0 +(n)σ1, and there are uniquely determined sequences τ0 ∈ S(f)
and τ1 ∈M(f) such that σ = τ0 + (n+ 1)τ1.

Proof. If σ0 is any sequence of S(f) and σ1 is any sequence of M(f), then σ0 +
(n)σ1 ∈ M(f2). This follows immediately from Lemma 2 and Proposition 2A.
We prove the first assertion in the lemma by showing that the mapping

G : S(f)×M(f)→ M(f2)
(σ0, σ1) �→ σ0 + (n)σ1

is one-to-one and onto.
Suppose we have G(σ0, σ1) = G(σ̃0, σ̃1), that is

σ0 + (n)σ1 = σ̃0 + (n)σ̃1, (5)

with σ0, σ̃0 ∈ S(f) and σ1, σ̃1 ∈ M(f). Applying the decimation operator D
to both sides of (5), we get Dσ0 = Dσ̃0, which is equivalent to σ0 = σ̃0, by
Lemma 3. Therefore, from (5), we obtain (n)σ1 = (n)σ̃1. Applying the shift
operator T to this equation, we get (n+1)Tσ1 = (n+1)T σ̃1. Another application
of the decimation operator yields DTσ1 = DT σ̃1, which is equivalent to σ1 = σ̃1,
by Lemma 3. Thus the mapping G is one-to-one.

To show that G is onto it now suffices to show that the sets S(f)×M(f) and
M(f2) have the same cardinality. In fact, if deg(f) = d, then #S(f) = 2d and
#M(f) = 2d − 1, so that S(f)×M(f) has cardinality 2d(2d − 1). On the other
hand, M(f2) = S(f2) \ S(f), so that #M(f2) = #S(f2) −#S(f) = 22d − 2d.
Hence G is onto and the proof of the first assertion in the lemma is complete.
The second assertion can be proved analogously by considering the mapping
H : S(f)×M(f)→M(f2) defined by (τ0, τ1) �→ τ0 + (n+ 1)τ1. ��

Lemma 5. Let f and g be binary irreducible polynomials of relatively prime de-
grees and with f(0)g(0) 
= 0. If σ ∈M(f2) and τ ∈M(g), then στ ∈M((f∨g)2).

Proof. According to Lemma 4 we can write σ = σ0 +(n)σ1 with uniquely deter-
mined sequences σ0 ∈ S(f) and σ1 ∈M(f). It follows that στ = σ0τ + (n)σ1τ .
By Lemma 1, we have σ1τ ∈ M(f ∨ g). By Lemma 2, we get (n)σ1τ ∈
M((f ∨ g)2). Since σ0τ ∈ S(f ∨ g), we conclude, using Proposition 2A, that
στ ∈M((f ∨ g)2). ��

Proof of Theorem 2. Since mσ =
∏r

i=1 f
ei

i and mτ =
∏s

j=1 gj are the canonical
factorizations of the minimal polynomials of σ and τ , respectively, it follows
from Proposition 3A that σ and τ possess unique representations σ =

∑r
i=1 σi

and τ =
∑s

j=1 τj with σi ∈M(fei

i ) for 1 ≤ i ≤ r, and τj ∈M(gj) for 1 ≤ j ≤ s.
It follows that

στ =
r∑

i=1

s∑
j=1

σiτj .
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By Proposition 2, deg(fi) divides M − 1 for all i, and by Proposition 1, deg(gj)
divides N for all j. By hypothesis we have gcd(M − 1, N) = 1. Consider the
sequence σiτj . If ei = 1, then Lemma 1 implies that σiτj ∈M(fi∨gj). If ei = 2,
then Lemma 5 implies that σiτj ∈ M((fi ∨ gj)2). It can be shown that the rs
irreducible polynomials fi ∨ gj , 1 ≤ i ≤ r, 1 ≤ j ≤ s, are distinct (compare the
proof of [6, Lemma 7]). Another application of Proposition 3A yields

mστ =
r∏

i=1

s∏
j=1

(fi ∨ gj)ei .

As the polynomials fi ∨ gj are irreducible, this is the canonical factorization of
mστ over F2. ��

4 The Case Per(σ) = 2M − 2 and Per(τ) = 2N − 2

In this section we deal with the most interesting case in which the minimal poly-
nomials of both sequences have multiple roots. Notice that Herlestam [15] and
Golić [8] achieved their respective results on the linear complexity of the prod-
uct of periodic sequences (with elements in a finite field) under the assumption
that at most one sequence may have a minimal polynomial with multiple roots.
The case of both sequences having minimal polynomials with multiple roots was
treated by Göttfert and Niederreiter [12], [13], [14].

In their investigations binomial coefficients of the form
(
a+b−2

a−1

)
play a crucial

role, where a is the multiplicity of a root of the first minimal polynomial, and
b the multiplicity of a root of the second minimal polynomial. In the binary
case, if the binomial coefficient is odd, then the corresponding root product
will in general contribute to the linear complexity of the product sequence with
the amount a + b − 1. If the binomial coefficient is even, there might be no
contribution at all.

The minimal polynomial of a binary sequence of least period 2N − 2 will in
general have many roots of multiplicity 2. As the binomial coefficient

(
a+b−2

a−1

)
is

even for a = b = 2, the results found in [12], [13], and [14] are of no assistance
for the matter of this section. We need two more lemmas.

Lemma 6. Let f and g be two irreducible polynomials over F2 of relatively
prime degrees and with f(0)g(0) 
= 0. Let σ, σ̃ ∈ M(f) and τ, τ̃ ∈ M(g). Then
στ = σ̃τ̃ if and only if σ = σ̃ and τ = τ̃ .

Proof. Clearly, σ = σ̃ and τ = τ̃ implies στ = σ̃τ̃ . To show the converse, let
deg(f) = M and deg(g) = N . Recall that S(f) and S(g) are vector spaces
over F2 with dim(S(f)) = M and dim(S(g)) = N , respectively. As σ 
= 0,
we can extend {σ} to a basis B = {σ, σ2, . . . , σM} of S(f). Similarly, let
C = {τ, τ2, . . . , τN} be a basis of S(g). It is known from Zierler and Mills [26] that
S(f ∨ g) is the uniquely determined subspace of V spanned by all product se-
quences ηθ with η ∈ S(f) and θ ∈ S(g). Now, dim(S(f∨g)) = deg(f∨g) = MN ,
by Lemma 1. It follows that
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D = {σiτj : 1 ≤ i ≤M, 1 ≤ j ≤ N}

is a basis of S(f ∨ g), where we set σ1 = σ and τ1 = τ .
Let the unique representations of σ̃ ∈M(f) ⊆ S(f) and τ̃ ∈M(g) ⊆ S(g) as

linear combinations relative to bases B and C be given by

σ̃ =
M∑
i=1

aiσi and τ̃ =
N∑

j=1

bjτj ,

respectively. The unique representation of σ̃τ̃ ∈M(f ∨ g) ⊆ S(f ∨ g) as a linear
combination relative to the basis D is

σ̃τ̃ =
M∑
i=1

N∑
j=1

aibjσiτj . (6)

The unique representation of στ ∈M(f ∨ g) ⊆ S(f ∨ g) as a linear combination
relative to the basis D is

στ =
M∑
i=1

N∑
j=1

cijσiτj , (7)

where c11 = 1 and all other coordinates cij = 0. Comparing coordinates in (6)
and (7), we obtain a1 = b1 = 1, and ai = 0 for 2 ≤ i ≤ M , and bj = 0 for
2 ≤ j ≤ N . Thus, σ̃ = σ1 = σ and τ̃ = τ1 = τ . ��
Lemma 7. Let f and g be binary irreducible polynomials of relatively prime
degrees with f(0)g(0) 
= 0. For any σ0 ∈ S(f), σ1 ∈ M(f), τ0 ∈ S(g), and
τ1 ∈M(g), the sequence

σ0τ0 + (n)σ1τ0 + (n+ 1)σ0τ1 (8)

is either the zero sequence or has minimal polynomial (f ∨ g)2. The sequence is
the zero sequence if and only if (σ0, τ0) = (0,0) or (σ0, τ0) = (σ1, τ1).

Proof. If (σ0, τ0) = (0,0) or (σ0, τ0) = (σ1, τ1), then one readily verifies that the
sequence in (8) is the zero sequence 0.

We now show that if (σ0, τ0) 
= (0,0) and (σ0, τ0) 
= (σ1, τ1), then the sequence
in (8) has minimal polynomial h2, where h = f ∨ g is irreducible by Lemma 1.
We have to consider three cases.

In the first case, σ0 = 0 and τ0 
= 0. The sequence in (8) reduces to (n)σ1τ0.
The sequence σ1τ0 has minimal polynomial h by Lemma 1, so that (n)σ1τ0 has
minimal polynomial h2 by Lemma 2.

In the second case, σ0 
= 0 and τ0 = 0. The sequence in (8) now is equal to
(n+ 1)σ0τ1 which again has minimal polynomial h2 according to Lemma 2.

In the last case, σ0 
= 0 and τ0 
= 0. We now have σ0, σ1 ∈ M(f) and
τ0, τ1 ∈M(g), so that all three product sequences σ0τ0, σ1τ0, and σ0τ1 appearing
in (8) have the minimal polynomial h. Let the uniquely determined rational
generating functions of the sequences σ0τ0, σ1τ0, and σ0τ1 be given by

a

h
,

b

h
, and

c

h
, (9)
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respectively. Applying Lemma 2, we get the rational generating function of the
sequence in (8):

(a+ b+ xb′ + xc′)h+ xh′(b + c)
h2

. (10)

It remains to show that the fraction is in reduced form.
By hypothesis, we have f(0)g(0) 
= 0, which implies h(0) 
= 0. As h is

irreducible we have gcd(h, h′) = 1. Thus the numerator of the fraction in (10)
is divisible by h only if h divides b + c. However, since deg(b) < deg(h) and
deg(c) < deg(h), this is only possible if b + c is the zero polynomial, that is, if
b = c. The latter, however, is equivalent to σ1τ0 = σ0τ1 which, by Lemma 6, is
equivalent to σ0 = σ1 and τ0 = τ1, a contradiction. ��
Let σ and τ be a binary sequences of least periods 2M−2 and 2N−2, respectively.
According to Proposition 2, the minimal polynomial of σ has the form

mσ = f2
1 · · · f2

afa+1 · · · fr (11)

with irreducible polynomials fi whose degrees divide M − 1. Of course, we may
have r = a in which case all factors have multiplicity 2. Similarly,

mτ = g2
1 · · · g2

bgb+1 · · · gs (12)

with irreducible polynomials gj whose degrees divide N − 1. Again, we may
have s = b. An application of Proposition 3A and a subsequent application of
Lemma 4 yields that σ can be represented in the form

σ =
a∑

i=1

[σ(0)
i + (n)σ(1)

i ] +
r∑

i=a+1

σi (13)

with uniquely determined sequences σ(0)
i ∈ S(fi) and σ(1)

i ∈M(fi) for 1 ≤ i ≤ a,
and σi ∈ M(fi) for a + 1 ≤ i ≤ r. Similarly, τ has a unique representation of
the form

τ =
b∑

j=1

[τ (0)
j + (n+ 1)τ (1)

j ] +
s∑

j=b+1

τj (14)

with τ
(0)
j ∈ S(gj) and τ

(1)
j ∈ M(gj) for 1 ≤ j ≤ b, and τj ∈ M(gj) for b + 1 ≤

j ≤ s.

Theorem 3. Let σ = (sn)∞n=0 and τ = (tn)∞n=0 be binary periodic sequences of
least periods 2M − 2 and 2N − 2, respectively. Let the canonical factorizations
of the minimal polynomials of σ and τ over F2 be given by (11) and (12). As-
sume that gcd(M − 1, N − 1) = 1. The canonical factorization of the minimal
polynomial of the product sequence στ = (sntn)∞n=0 over F2 is given by

mστ =

r∏
i=1

s∏
j=1

(fi ∨ gj)2

r∏
i=a+1

s∏
j=b+1

(fi ∨ gj)
∏

(i,j)∈I0×J0

(fi ∨ gj)2
∏

(i,j)∈I1×J1

(fi ∨ gj)2
. (15)
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The index sets I0, I1, J0, and J1 are uniquely determined by the representa-
tions (13) and (14):

I0 = {i : 1 ≤ i ≤ a, σ
(0)
i = 0}, I1 = {i : 1 ≤ i ≤ a, σ

(0)
i = σ

(1)
i },

J0 = {j : 1 ≤ j ≤ b, τ
(0)
j = 0}, J1 = {j : 1 ≤ j ≤ b, τ

(0)
j = τ

(1)
j }.

As usual, an empty product—which may occur in the denominator of the big
fraction—has the value 1.

Proof. Consider equation (11). By Proposition 3A, we can write σ in the form
σ = σ[2] + σ[1] with uniquely determined sequences σ[2] ∈ M(f2

1 · · · f2
a ) and

σ[1] ∈M(fa+1 · · · fr). (In the case that r = a, M(fa+1 · · · fr) = M(1) and σ[1] is
the zero sequence.) Similarly, τ = τ [2] +τ [1] with uniquely determined sequences
τ [2] ∈M(g2

1 · · · g2
b ) and τ [1] ∈M(gb+1 · · · gs). It follows that

στ = σ[2]τ [2] + σ[2]τ [1] + σ[1]τ [2] + σ[1]τ [1]. (16)

We already know the minimal polynomial of the second, third, and fourth prod-
uct in (16). By Theorem 2, we have:

mσ[2]τ [1] =
a∏

i=1

s∏
j=b+1

(fi ∨ gj)2, (17)

mσ[1]τ [2] =
r∏

i=a+1

b∏
j=1

(fi ∨ gj)2. (18)

By Theorem 1, we have:

mσ[1]τ [1] =
r∏

i=a+1

s∏
j=b+1

(fi ∨ gj). (19)

It remains to determine the minimal polynomial of the first product in (16). We
have

σ[2]τ [2] =
( a∑

i=1

[σ(0)
i + (n)σ(1)

i ]
)( b∑

j=1

[τ (0)
j + (n+ 1)τ (1)

j ]
)

=
a∑

i=1

b∑
j=1

[σ(0)
i τ

(0)
j + (n)σ(1)

i τ
(0)
j + (n+ 1)σ(0)

i τ
(1)
j ].

By Lemma 7, the term in the brackets is the zero sequence if and only if (i, j) ∈
I0 × J0 or (i, j) ∈ I1 × J1. Otherwise it is a sequence with minimal polynomial
(fi ∨ gj)2. It follows that

mσ[2]τ [2] =
∏

(i,j)∈C\K

(fi ∨ gj)2, (20)

where C = {(i, j) : 1 ≤ i ≤ a, 1 ≤ j ≤ b} and K = (I0 × J0) ∪ (I1 × J1).
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Since the irreducible polynomials fi ∨ gj, 1 ≤ i ≤ r, 1 ≤ j ≤ s, are again
distinct (a consequence of gcd(M − 1, N − 1) = 1), the four polynomials in (17),
(18), (19), and (20) are pairwise relatively prime. Therefore, it follows from
equation (16) and Proposition 3A that the minimal polynomial of στ is the
product of those four polynomials. The product of the four polynomials, how-
ever, coincides with the polynomial in (15). ��

Consider equation (11). The squarefree part of mσ is defined as 〈mσ〉 = f1 · · · fr.
It can be computed by 〈mσ〉 = mσ/

√
gcd(mσ,m′

σ). In the next theorem, mDσ

denotes the minimal polynomial of the sequence Dσ.
In order to obtain the index sets I0, I1, J0, and J1 appearing in Theorem 3,

it is not necessary to actually know the representations (13) and (14) of the
sequences σ and τ .

Theorem 4. Under the provisions of Theorem 3, we have

S0 =
〈mσ〉
mDσ

=
∏
i∈I0

fi, S1 =
〈mσ〉
mDTσ

=
∏
i∈I1

fi,

T0 =
〈mτ 〉
mDTτ

=
∏
j∈J0

gj , T1 =
〈mτ 〉
mDτ

=
∏

j∈J1

gj.

Proof. We prove the first formula. The other three are proved similarly. Consider
the representation (13). We apply the decimation operator to both sides. This
yields

Dσ =
a∑

i=1

Dσ
(0)
i +

r∑
i=a+1

Dσi.

The minimal polynomial mDσ of the sequence Dσ is the product of all fi, 1 ≤
i ≤ r, for which σ

(0)
i 
= 0. It therefore follows that

S0 =
〈mσ〉
mDσ

=
∏
i∈I0

fi.

��

Corollary 1. Under the provisions of Theorem 3, the linear complexity L(στ)
of the product sequence στ is given by

L(στ) =L(σ)L(τ) − 2 deg
(√

gcd(mσ,m′
σ)
)
deg
(√

gcd(mτ ,m′
τ )
)

− 2 deg(S0) deg(T0)− 2 deg(S1) deg(T1),

where S0, T0, S1, and T1 are the polynomials specified in Theorem 4.

Proof. The assertion follows from Theorem 3 and Theorem 4. ��

Let us assume that the sequences σ and τ are chosen at random from the re-
spective sets of all binary periodic sequences of periods 2M − 2 and 2N − 2. By
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Dai and Yang [4, Lemma 1], most irreducible factors appearing in the canoni-
cal factorization of the minimal polynomial mσ and mτ , respectively, will have
multiplicity 2 with high probability. One can also show that for such randomly
chosen sequences σ and τ with high probability the corresponding index sets I0,
I1, J0, and J1 will have small cardinalities.

If all irreducible factors of mσ and mτ have multiplicity 2, if at least one of
the two sets I0 and J0, and at least one of the two sets I1 and J1 is empty, then
the formula in the corollary reduces to L(στ) = 1

2L(σ)L(τ).
The expected value for the linear complexity of a randomly chosen periodic

sequence is close to the period length (see Dai and Yang [4], and Meidl and
Niederreiter [17]). Experimental results show that the majority of the NLF-
SRs under consideration have output sequences of maximum linear complexity
L(σ) = 2M − 2 respectively L(τ) = 2N − 2. As a consequence, the linear com-
plexity of στ can be equal to the least period of στ which is 1

2

(
2M − 2

)
(2N −2).
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7. B. M. Gammel, R. Göttfert, and O. Kniffler: ACHTERBAHN-80 and
ACHTERBAHN-128/80, eSTREAM, ECRYPT Stream Cipher Project, Juni 2006.
http://www.ecrypt.eu.org/stream/papers.html
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Appendix A

In the following three propositions, Fq denotes the finite field of order q.
Throughout the entire article, however, only sequences with elements in the
binary field F2 occur.

Proposition 1A. Let σ = (sn)∞n=0 be a sequence of elements of Fq, and let g
be a monic polynomial over Fq with g(0) 
= 0. Then σ is a periodic sequence in
V = F∞

q with characteristic polynomial g if and only if

∞∑
n=0

snx
−n−1 =

f(x)
g(x)

with f ∈ Fq[x] and deg(f) < deg(g).

Proof. See Niederreiter [19], [21]. ��

Proposition 2A. Let σ = (sn)∞n=0 be a sequence of elements of Fq, and let m
be a monic polynomial over Fq with m(0) 
= 0. Then σ is a periodic sequence
with minimal polynomial m if and only if

∞∑
n=0

snx
−n−1 =

h(x)
m(x)

with h ∈ Fq[x], deg(h) < deg(m), and gcd(h,m) = 1.

Proof. This follows from Proposition 1A and the definition of the minimal poly-
nomial, see [19], [21]. ��

Proposition 3A. Let σ1, . . . , σr be periodic sequences in V = F
∞
q with minimal

polynomials mi ∈ Fq[x], 1 ≤ i ≤ r. If the polynomials m1, . . . ,mr are pairwise
relatively prime, then the minimal polynomial of the sum σ = σ1 + · · · + σr is
equal to the product m1 · · ·mr. Conversely, let σ be a periodic sequence in V
whose minimal polynomial m ∈ Fq[x] is the product of pairwise relatively prime
monic polynomials m1, . . . ,mr ∈ Fq[x]. Then, for each i = 1, . . . , r, there exists
a uniquely determined periodic sequence σi with minimal polynomial mi ∈ Fq[x]
such that σ = σ1 + · · ·+ σr.

Proof. A proof of the first part of the proposition can be found in [16, p. 426]. A
proof of the second part can be found in [11, Korollar 2.5] and [6, Lemma 6]. ��
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Abstract. This paper proposes a new algorithm, called the Diagonal
Double-Add (DDA) algorithm, to compute the k-th term of special kinds
of characteristic sequences. We show that this algorithm is faster than
Fiduccia’s algorithm, the current standard for computation of general
sequences, for fourth- and fifth-order sequences.

1 Introduction

Linear feedback shift register (LFSR) sequences have found an important role in
public-key cryptography. One of the first to use them was Niederreiter [11,12,13]
who proposed several cryptosystems based on LFSR’s. More recently, cryptosys-
tems such as LUC [10,16], GH [4], XTR [7], and a fifth-order system [14,2] have
been based upon linear recurrence sequences. As cryptography places a high
priority on efficiency of computation, algorithms to compute sequence terms
became very important.

Several algorithms to compute sequences terms, such as by Miller and Spencer-
Brown [9], Shortt [15], Shortt and Wilson [19], Gries and Levin [5], Urbanek [17],
and Fiduccia [1], have been proposed to compute LFSR sequences. Of these,
Fiduccia’s appears to be the most efficient.

In this paper, we propose a new algorithm, called the Diagonal-Double-Add
(DDA) algorithm to compute remote terms for a special type of sequences. These
sequences have found use in cryptography as the basis for XTR [7] and a special
fifth-order cryptosystem [14,2]. We examine its computational cost and show
that it is more efficient than Fiduccia’s algorithm for fourth- and fifth-order
sequences.

This paper is organized as follows. In Section 2, we give background on the
special type of sequence we are working with. In Section 3, we introduce the
DDA algorithm and analyze its computational cost in Section 4. We note here
that the analysis of the DDA is very long and tedious. For this reason, we give
the reader the computational cost of each step and a strong indication of how
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this cost is derived, but leave the complete details for the full paper. We then
present and analyze Fiduccia’s algorithm in Section 5 and compare the two in
Section 6.

2 Preliminaries

The sequences we will be looking at were first proposed as third-order sequences
for the XTR [7] cryptosystem. They were also employed in a related fifth-order
cryptosystem [14,2]. These sequences were later generalized for use in cryptog-
raphy for any order [3].

Let p ≡ 2 (mod 3) be a prime and q = p2. We denote by GF (q) the finite
field of order q.

Let f(x) be an irreducible polynomial of degree n over GF (q) and α a root of
f(x) in GF (qn). Then the roots of f(x) are αi = αqi

for i = 0, . . . , n− 1. Note
that these roots all have the same order in GF (qn).

Suppose α has order dividing both (qn − 1)/(q− 1) = qn−1 + qn−2 + · · · q + 1
and (p2n − 1)/(pn − 1) = pn + 1. Then we may represent f(x) as

f(x) = xn − a1x
n−1 + a2x

n−2 − · · ·+ (−1)n−1an−1x+ (−1)n (1)

Note that the constant term is (−1)nαqn−1+qn−2+···+q+1 = (−1)n by the assump-
tion on the order of α.

Since the order of α also divides pn + 1, we have that α−1 = αpn

. It then
follows that

aj =
∑

0≤i1<i2<...<ij≤n−1

αqi1+···+qij

=
∑

0≤i1<i2<...<in−j≤n−1

α−(qi1+···+qin−j )

=
∑

0≤i1<i2<...<in−j≤n−1

αpn(qi1+···+qin−j )

=

⎛⎝ ∑
0≤i1<i2<...<in−j≤n−1

αqi1+···+qin−j

⎞⎠pn

= apn

n−j (2)

for all j = 1, . . . , n− 1. Since aj ∈ GF (p2), we must have aj = an−j if n is even
and aj = ap

n−j if n is odd.
Consider the recurrence relation of order n over GF (q)

sk+n = a1sk+n−1 − a2sk+n−2 + · · ·+ (−1)nan−1sk+1 + (−1)n+1sk. (3)

The sequence {si} of elements in GF (q) obtained from (3) with fixed initial
conditions

si = Tr(αi) = αi
0 + αi

1 + · · ·+ αi
n−1 (4)
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for i = 0, . . . , n − 1 is called the n-th order characteristic sequence over GF (q)
generated by α. The period Q of this sequence is equal to the order of α and
defining s−i = sQ−i, we get that (4) holds for si for all i ∈ Z. We also have that

s−i = α−i + α−iq + · · ·+ αiqn−1

= αpni + αpniq + · · ·+ αpnqn−1

= (αi + αiq + · · ·+ αqn−1
)pn

= spn

i

Thus, we have s−i = si if n is even and s−i = sp
i if n is odd.

For any integer k, let

fk(x) = xn − a1,kx
n−1 + · · ·+ (−1)nan−1,kx+ (−1)n+1

be the polynomial whose roots are αk
i for all i = 0, . . . , n − 1. Using a similar

argument as in (2), we see that for all i = 1, . . . , n− 1, ai,k = an−i,k if n is even
and ai,k = ap

n−i,k if n is odd. We also have an analogue to (3), namely

skn+l = a1,ksk(n−1)+l − · · ·+ (−1)nan−1,ksk+l + (−1)n+1sl (5)

for all integers k and l.
The sk and ai,k terms are related by the Newton Formula (see [8]).

Theorem 1 (Newton’s Formula). For a characteristic sequence {si}i∈Z and
any integers k and i with 1 ≤ i ≤ n− 1,

si,k = a1,ks(i−1)k − · · ·+ (−1)iai−1,ksk + (−1)i+1iai,k (6)

and hence

ai,k = i−1((−1)i+1sik + (−1)ia1,ks(i−1)k + . . .+ ai−1,ksk) (7)

The key use for this theorem is that given the sequence terms s0, sk, s2k, . . . , sik,
we can efficiently calculate the Newton coefficients a1,k, a2,k, . . . , ai,k and vice
versa.

3 The Diagonal Double-Add (DDA) Algorithm

We now introduce a new algorithm called the Diagonal Double-Add (DDA)
algorithm to calculate the k-th term of a characteristic sequence. The following
exposition is for odd n. The case for even n is analogous. Let v = n−1

2 . For each
integer j, define the (n− 1)/2× n array Ŝj as

Ŝj =

⎡⎢⎢⎢⎢⎢⎣
s−v s−v+1 · · · s0 · · · sv

sj−v sj−v+1 · · · sj · · · sj+v

s2j−v s2j−v+1 · · · s2j · · · s2j+v

...
...

. . .
...

. . .
...

svj−v svj−v+1 · · · svj · · · svj+v

⎤⎥⎥⎥⎥⎥⎦ (8)
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The (m, l)-entry, that is the entry in the m-th row and l-th column, is sjm+l

where m is indexed from 0 to v and l is indexed from −v to v.
Our goal is to calculate either Ŝ2j or Ŝ2j+1 from Ŝj . This will enable us to piece

together a double-and-add type of algorithm to compute Ŝk given an integer k.
The element sk can then be read off from Ŝk.

To calculate Ŝ2j from Ŝj , we simply append rows to the bottom of Ŝj . Given
the Newton coefficients a1,j, . . . , an−1,j , we can use the variant of (5)

sjm+l = a1,jsj(m−1)+l − a2,jsj(m−2)+l + · · ·+ (−1)n−1sj(m−n)+l (9)

to progressively compute the sequence terms sjm+l for m = v + 1, . . . , 2v and
l = −v, . . . , v. We then keep the rows of even index to form Ŝ2j . We note here
that since either s−i = si if n is even and s−i = sp

i if n is odd, all the terms
needed to compute these new terms are already in Ŝj . Note also that the Newton
coefficients can be computed from the elements in Ŝj .

To calculate Ŝ2j+1, we need to compute terms of the form s(2j+1)u+w =
s2ju+u+w for u = 0, . . . , v and w = −v, . . . , v. Terms with 2u ≤ v and u+w ≤ v

already exist in Ŝj . Terms with 2u ≤ v and u + w > v can be computed using
(3) from the terms in the same row. When 2u > v and −v ≤ u + w ≤ v, these
terms can be computed using (9) as occurred when computing Ŝ2j . However, if
2u > v and u+ w > v, we require another recurrence.

We can compute the Newton coefficients a1,j+1, . . . , an−1,j+1 from Ŝj . We can
then subsequently and progressively compute the terms sjm+l where m, l > v
by using the recurrence

sjm+l = a1,j+1sj(m−1)+l−1−a2,j+1sj(m−2)+l−2+· · ·+(−1)n−1sj(m−n)+l−n (10)

Pictorially, the new terms are calculated diagonally about Ŝj instead of vertically
as in the double step.

We now formally state the DDA algorithm.

Algorithm 1. DDA

Input: A positive integer k
Output: Ŝk

1. Let w and ki for i = 0, . . . , w be such that k =
∑w

i=0 ki2
i.

2. B ← Ŝ1, j ← 1.

3. For i from w − 2 down to 0 do

3.1 Compute the Newton coefficients a1,j , . . . , a(n−1)/2,j .

3.2 If ki = 0, then B ← S2j , j ← 2j.

3.3 If ki = 1

3.3.1 Compute the Newton coefficients a1,j+1, . . . , a(n−1)/2,j+1.
3.3.2 B ← Ŝ2j+1, j ← 2j + 1.

4. Output B = Ŝk.
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4 The Computational Cost of the DDA

In this section, we examine the computational cost of the DDA. We start by
examining the cost of simple operations.

4.1 Measuring Operations

We will measure the cost of the DDA in terms of the number of multiplications in
GF (p) it uses. Additions and subtractions and are not as costly as multiplications
and so will not be counted. We will include terms only which involve k and
disregard those that depend only on n. We shall also assume that k has roughly
the same number of 0’s as 1’s in its binary representation.

The following lemma due to Lenstra and Verheul [7], details the costs of basic
operations in GF (q).

Lemma 1 (Lenstra, Verheul). Suppose p ≡ 2 (mod 3). Let x, y, z ∈ GF (p2)
and c ∈ GF (p).

– The p-th power xp is for free.
– The squaring x2 requires 2 multiplications in GF (p).
– The multiplication xy requires 3 multiplications in GF (p).
– The joint multiplication xz + yzp requires 4 multiplications in GF (p).
– The scalar multiplication cx requires 2 multiplications in GF (p).

This lemma, and the fact that ai,j = apn

n−i,j tells us that computing a single
sequence term from (3), (5), (9), or (10) requires 2(n−1) and 3n/2 multiplications
in GF (p) if n is odd and even respectively.

From (7), we see that the i-th Newton coefficients ai,j where 1 ≤ i ≤ �n/2	
requires 3(i − 1) multiplications in GF (p) in addition to the multiplication by
i−1. When i is a power of 2, division by i can essentially be done by a shift of
the bits in the representation the elements. Hence it may considered free of cost.
Otherwise, i−1 (mod p) can be precomputed and requires 2 multiplications in
GF (p). Calculating the total cost is now straightforward by summing over i. It
is listed in Table 1.

Table 1. Cost of Computing the Newton Coefficients a1,j , . . . , a�n/2�,j

n # of Multiplications in GF (p)

n even (3n2 + 2n − 8 − 16 log n)/8

n odd (3n2 − n + 1 − 16 log n)/8

4.2 The Computational Cost of the DDA

We now calculate the total cost of the DDA. Please note that some parts of this
analysis are excessively tedious. When this is the case, we will omit some of the
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Table 2. Cost of Step 3.2 in the DDA

n # of Multiplications in GF (p)

n even 3n3/4

n odd n3 − 2n2 + n

Table 3. Cost of Adding New Rows in Step 2.3.2 of the DDA

n # odd rows # even rows total cost (in mults)

n ≡ 1 (mod 4) (n − 1)/4 (n − 1)/4 (2n3 − 5n2 + 4n − 1)/2

n ≡ 2 (mod 4) (n − 2)/4 (n + 2)/4 (6n3 − 3n2 + 6n)/8

n ≡ 3 (mod 4) (n − 3)/4 (n + 1)/4 (2n3 − 5n2 + 6n − 3)/2

n ≡ 0 (mod 4) n/4 n/4 (6n3 − 3n2)/8

Table 4. Cost of Adding Side Terms in Step 3.3.2 of the DDA

n row index # multiplications in GF (p)

n ≡ 1 (mod 4) even (n3 + n2 − 5n + 3)/16

n ≡ 2 (mod 4) even (3n3 − 12n)/64

n ≡ 3 (mod 4) even (n3 − 3n2 − n + 3)/16

n ≡ 4 (mod 4) even (3n3 + 12n2)/64

n ≡ 1 (mod 4) odd (n3 − 11n2 + 27n − 17 + 8(−1)(n−5)/4)/32

n ≡ 2 (mod 4) odd (3n3 + 12n2 − 12n + 24n(−1)(n+2)/4)/128

n ≡ 3 (mod 4) odd (n3 + n2 − 9n + 7 + 8(−1)(n+1)/4)/32

n ≡ 4 (mod 4) odd (3n3 − 24n2 + 24n + (−1)(n−4)/4)/128

details and give the total computational cost. A complete detailed analysis will
appear in the full paper.

The cost of the Newton coefficients in Steps 3.1 and 3.3.1 are listed in Table 1.
We calculate (n − 1)/2 and n/2 new rows in Step 3.2 for the case of n odd

and even respectively. Each row has n new terms, each of which is derived from
an application of (9). Thus, the total cost of this step is the cost of computing
n(n− 1)/2 and n2/2 new terms using (9). It is listed in Table 2.

The only remaining step to be analyzed is Step 3.3.2. There are �n/2	 new rows
added to the bottom of Ŝj . The new rows of even index have n terms. However, the
odd-indexed rows are only needed to calculate the even-indexed terms. Because
the right-most term is calculated using (10), odd-indexed rows need to contain
only n− 1 terms. The total cost of the new rows is listed in Table 3.
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Table 5. Cost of DDA Algorithm

n # of Multiplications in GF (p)

n ≡ 1 (mod 4) (67n3 − 117n2 + 65n − 207 − 192 log n + 8(n − 1)(−1)(n−5)/4)/64 log k

n ≡ 2 (mod 4) (201n3 − 108n2 + 156n − 384 − 768 log n + 24n(−1)(n+2)/4)/256 log k

n ≡ 3 (mod 4) (67n3 − 113n2 + 69n − 215 − 192 log n + 8(n − 1)(−1)(n+1)/4)/64 log k

n ≡ 0 (mod 4) (201n3 − 84n2 + 144n − 384 − 768 log n + 24n(−1)(n−4)/4)/256 log k

Step 3.3.2 must also compute terms of the form sjm+l with m ≤ v and l > v.
We shall refer to these terms as side terms. Side terms in even-indexed rows are
needed to form Ŝ2j+1. Side terms in odd-indexed rows are needed for use in (10)
to compute terms in the rows below it. A proper analysis of the cost of these
type of terms is extremely tedious. It will be shown in the full paper. The total
cost of these terms is listed in Table 4.

Putting these all together, we get the total cost of the DDA as listed in Table 5.

5 Fiduccia’s Algorithm

To evaluate the efficiency of the DDA algorithm, we will compare it to the current
standard for efficient computation of linear recurrences, Fiduccia’s algorithm [1].
In this section, we describe Fiduccia’s algorithm in detail and then analyze its
computational cost. Let us start with some background.

The companion matrix C of the linear recurrence (3) is defined as

C =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
(−1)n+1 (−1)nan−1 (−1)n−1an−2 · · · a1

⎤⎥⎥⎥⎥⎥⎦
The characteristic polynomial of C is f(x) as in (1).

We define the sequence vector sj as

sj =

⎡⎢⎢⎢⎣
sj

sj+1

...
sj+n−1

⎤⎥⎥⎥⎦
Observe that Csj = sj+1, whence for any positive integer k, Cksj = sj+k.

Fiduccia makes use of the Cayley-Hamilton theorem.

Theorem 2 (Cayley-Hamilton). Let λ(x) be the characteristic polynomial of
an n× n matrix M . Then λ(M) = 0n where 0n is the n× n zero matrix.
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This theorem tells us that Ck = r(C) where r(x) is any polynomial such that
r(x) ≡ xk (mod f(x)). Thus, Fiduccia’s algorithm computes r(x) in this way,
then uses r(C) to get sk. We now state it formally.

Algorithm 2. Fiduccia

Input: A positive integer k
Output: sk

1. d(x) ← x.
2. For i from w − 2 down to 0 do

2.1 d(x) ← d(x) × d(x) mod f(x).
2.2 If ki = 1, d(x) ← d(x) × x mod f(x).

3. D ← d(C) and sk ← Ds0.

Remark 1. Fiduccia also gave a speedup of Step 3 which only calculated one
column of d(C). However, this will not affect the asymptotic complexity of the
algorithm so we will not list it here.

Step 2.1 requires a polynomial squaring with reduction modulo f(x). The squar-
ing can be done by using Karatsuba [6] multiplication for a total cost of n2 + n
multiplications in GF (p). The reduction modulo f(x) would cost a total of
3n2 − 6n+ 3 multiplications.

Step 2.2 requires a multiplication by x with reduction modulo f(x). The
multiplication has no cost since we merely shift coefficients. The reduction costs
3(n− 1) multiplications.

Putting this all together, the total cost of Fiduccia’s algorithm is (8n2− 7n+
3)/2 log k multiplications in GF (p).

6 The Efficiency of the DDA

As Fiduccia’s algorithm has a highest term of n2 log k while the DDA has a high-
est term n3 log k, Fiduccia’s algorithm is faster asymptotically for large values
of n and for all types of sequences.

The question of which is more efficient for small values of n requires further
examination. Table 6 lists the values obtained by substituting n = 2, 3, 4, 5, 6, 7
into the cost of Fiduccia’s algorithm and Table 5 for the DDA.

Table 6 shows that for characteristic sequences where n ≥ 6, Fiduccia is more
efficient. For the cases where n = 2, 3, the DDA is faster. We note here that
in these cases, the DDA is essentially the same as given in the LUC cryptosys-
tem [10,16], for n = 2 and the XTR cryptosystem [7] for n = 3. However, in
these two cases no Newton coefficients need to be computed since a1,k = sk. The
real power of the DDA occurs when n ≥ 4 since this is where non-trivial Newton
coefficients are computed.

For the cases of n = 4, 5, the cost is very close between the two algorithms.
However, there are some speedups available for the DDA. We examine them in
the next two subsections.
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Table 6. Comparison of Fiduccia’s Algorithm and the DDA for Small Values of n (in
log k operations)

n Fiduccia DDA

2 10.5 mult 6 mult

3 27 mult 12 mult

4 51.5 mult 52.5 mult

5 84 mult 84.5 mult

6 124.5 mult 183 mult

7 173 mult 274.5 mult

For some terms during the course of the DDA, (5) can be made more efficient
than the standard count by making several observations. We examine these in-
dividually for each n.

6.1 Fourth-Order Sequences

For fourth-order sequences, since a1,k = sk and s0 = 4, we can rewrite (5) for
the following terms.

s3k = a1,ks2k − a2,ksk + a1,ks0 − sk = sk(s2k − a2,k + 3)

s3k+3 = a1,k+1s2k+2−a2,k+1sk+1+a1,k+1s0−sk+1 = sk+1(s2k+2−a2,k+1)+3sk+1

The cost of 6 multiplications in GF (p) changes to 3 for s3k and s3k+3. Note also
that the cost of computing the Newton coefficients a2,k and a2,k+1 changes from
3 multiplications to 2 multiplications in GF (p) each.

Thus, the total cost of the DDA becomes 48 log k multiplications.

6.2 Fifth-Order Sequences

For fifth-order sequences, (5) requires 8 multiplications in GF (p). Again since
a1,k = sk and s0 = 5, we can rewrite (5) for the following terms.

s3k = sk(s2k − a2,k) + 5ap
2,k − (sp

k)2 + sp
2k

s3k+3 = sk+1(s2k+2 − a2,k+1) + 5ap
2,k+1 − (sp

k+1)
2 + sp

2k+2

s4k = sk(s3k + ap
2,k)− a2,ks2k − 4sp

k

s4k+4 = sk+1(s3k+3 + ap
2,k+1)− a2,k+1s2k+2 − 4sp

k+1

This reduces from a cost of 8 multiplications in GF (p) to 4 for s3k and s3k+3

and 6 for s4k and s4k+4. Note also that the cost of computing the Newton
coefficients a2,k and a2,k+1 changes from 3 multiplications to 2 multiplications
in GF (p) each.
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Thus the total cost of the DDA becomes 74 log k multiplications. It should be
noted that Quoos and Mjølsnes [14] also gave an algorithm for computing fifth-
order sequences of this type. However, the computational cost of their algorithm
was found to be 102 logk multiplications in GF (p).

6.3 Summary

The computational cost for Fiduccia’s algorithm and the DDA algorithm with
improvements are listed in Table 7 for n = 4, 5.

Table 7. Updated Comparison of Fiduccia and the DDA for n = 4, 5 (in log k opera-
tions)

n Fiduccia DDA

4 51.5 mult 48 mult

5 84 mult 74 mult

Hence, the DDA is the faster algorithm for n = 2, 3, 4, 5 while Fiduccia’s
algorithm is faster for n ≥ 6.

References

1. Fiduccia, C.M.: An Efficient Formula for Linear Recurrences. SIAM J. Comput.
14 (1985) 106–112.

2. Giuliani, K., Gong, G.: Efficient Key Agreement and Signature Schemes Using
Compact Representations in GF (p10). In: Proceedings of the 2004 IEEE Interna-
tional Symposium on Information Theory - ISIT 2004. Chicago (2004) 13–13.

3. Giuliani, K., Gong, G.: New LFSR-Based Cryptosystems and the Trace Discrete
Log Problem (Trace-DLP). In: Sequence and Their Applications – SETA 2004.
Lecture Notes In Computer Science, Vol. 3486. Springer-Verlag, Berlin Heidelberg
New York (2005) 298–312.

4. Gong, G., Harn, L.: Public-Key Cryptosystems Based on Cubic Finite Field Ex-
tensions. IEEE Trans. IT. 24 (1999) 2601–2605.

5. Gries, D., Levin, D.: Computing Fibonacci Numbers (and Similarly Defined Func-
tions) in Log Time. Information Processing Letters 11 (1980) 68–69.

6. Karatsuba, A., Ofman, Y.: Mulplication of Many-Digital Numbers by Automatic
Computers. Physics-Daklady 7 (1963) 595–596.

7. Lenstra, A., Verheul, E.: The XTR Public Key System. In: Advances in Cryptology
– Crypto 2000. Lecture Notes In Computer Science, Vol. 1880. Springer-Verlag,
Berlin Heidelberg New York (2000) 1–19.

8. Lidl, N., Niederreiter, H.: Finite Fields. Addison-Wesley, Reading (1983).
9. Miller, J. C. P., Spencer-Brown, D. J.: An Algorithm For Evaluation of Remote

Terms in a Linear Recurrence Sequence. Computer Journal 9 (1966/67) 188–190.
10. Müller, W. B., Nobauer, R.: Cryptanalysis of the Dickson scheme. In: Advances

in Cryptology – Eurocrypt 1985. Lecture Notes In Computer Science, Vol. 219.
Springer-Verlag, Berlin Heidelberg New York (1986) 50–61.



A New Algorithm to Compute Remote Terms in Special Types 247

11. Niederreiter, H.: A Public-Key Cryptosystem Based on Shift-Register Sequences.
In: Advances in Cryptology – Eurocrypt 1985. Lecture Notes In Computer Science,
Vol. 219. Springer-Verlag, Berlin Heidelberg New York (1986) 35–39.

12. Niederreiter, H.: Some New Cryptosystems Based on Feedback Shift Register Se-
quences. Math. J. Okayama Univ. 30 (1988) 121-149.

13. Niederreiter, H.: Finite Fields and Cryptology. In: Finite Fields, Coding Theory,
and Advances in Communications and Computing. M. Dekker, New York (1993)
359–373.

14. Quoos, L., Mjølsnes, S.-F.: Public Key Systems Based on Finite Field Extensions
of Degree Five. Presented at Fq7 conference (2003).

15. Shortt, J.: An Iterative Algorithm to Calculate Fibonacci Numbers in O(log n)
Arithmetic Operations. Information Processing Letters 7 (1978) 299–303.

16. Smith, P., Skinner, C.: A Public-Key Cryptosystem and a Digital Signature System
Based on the Lucas Function Analogue to Discrete Logarithms. In: Advances in
Cryptology – Asiacrypt ’94. Lecture Notes In Computer Science, Vol. 917. Springer-
Verlag, Berlin Heidelberg New York (1994) 357–364.

17. Urbanek, F. J.: An (O(log n) Algorithm for Computing the nth Element of a So-
lution of a Difference Equation. Information Processing Letters 11 (1980) 66–67.

18. Ward, M.: The Algebra of Recurring Series. Annals of Math 32 (1931) 1–9.
19. Wilson, T. C., Shortt, J.: An O(log n) Algorithm for Computing General Order-k

Fibonacci Numbers. Information Processing Letters 10 (1980) 68–75.



Implementation of Multi-continued Fraction

Algorithm and Application to Multi-sequence
Linear Synthesis�

Quanlong Wang1,2, Kunpeng Wang2, and Zongduo Dai2

1 School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
quanlongwang@yahoo.com.cn

2 State Key Laboratory of Information Security (Graduate School of Chinese
Academy of Sciences), Beijing 100049, P.R. China

{kpwang, daizongduo}@is.ac.cn

Abstract. In this paper, we present a method of implementing the
multi-continued fraction algorithm on a class of infinite multi-sequences.
As applications of our implementing method, we get the linear com-
plexity and minimal polynomial profiles of some non-periodic multi-
sequences.

1 Introduction

It is well known that Berlekamp-Massey algorithm[1,2] (BMA) can be used for
the problem of single sequence linear synthesis, and its generalization, the gen-
eralized Berlekamp-Massey algorithm (GBMA) [3,4], can be used for the same
problem of multi-sequences. However, it is a never ending job when acting the
GBMA on a non-periodic multi-sequence S, because GBMA is an iterative al-
gorithm and may only return the linear complexity and minimal polynomial of
the length n prefix of S at the n-th step.

Recently, a multi-continued fraction algorithm (m-CFA), as a generalization of
simple continued fraction algorithm for formal Laurent series, was introduced for
multi-formal Laurent series over any given field [5,6]. It is known [5,6] that the
m-CFA always provides optimal rational approximation to multi-formal Laurent
series, while it is proved [14] that both Jacobi-Perron Algorithm (JPA) [15] and
modified Jacobi-Perron Algorithm (MJPA) [17], which are also algorithms for the
problem of rational approximation to multi-formal Laurent series, do not guar-
antee providing optimal rational approximation. In addition, any multi-sequence
can be identified with a multi-formal Laurent series [6] and the multi-sequence
linear synthesis problem is essentially the optimal rational approximation prob-
lem of the multi-formal Laurent series (identified with it). The linear complexity
and minimal polynomial profiles of any given multi-sequence can then be ob-
tained immediately from its multi-continued fraction expansion. Thus, it is not
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surprising that m-CFA is a powerful tool in dealing with the problems related
to linear complexities of multi-sequences. In fact, there are already advances in
problems based on the technique of m-CFA, such as on d-perfect multi-sequence
conjecture [8,9,10], asymptotic behavior of normalized linear complexities of
multi-sequences [11], and the conjecture [8,13] of the expected value of linear
complexity of multi-binary sequences and the relation [12] between the GBMA
and the m-CFA, etc.. In view of the usefulness of m-CFA, it is natural to consider
how to implement m-CFA in computer programs.

In this paper, we present a method of implementing the m-CFA on a class of
multi-formal Laurent series whose components are algebraic functions of degree
greater than 1 over the rational function field over any given finite field. We
have run our implementing on some multi-formal Laurent series of the form
(γ, γ2)T (here and later, T means transpose), where γ is a special kind of algebraic
functions of degree 3 over the rational function field over the binary field, the
experiment results show that their multi-continued fraction expansions are all
periodic. As applications, the linear complexity and minimal polynomial profiles
for the multi-infinite sequences corresponding to (γ, γ2)T are obtained. It is
worth pointing out that these multi-sequences are all non-periodic, since these
γ are irrational.

2 m-CFA and Linear Complexity

In this section, we recall the multi-continued fraction algorithm which is given
in [5,6] and its relation with the linear complexity of multi-sequence. For this
purpose, we need to recall some concepts and give some notations.

Let Fq be the finite field with q elements, and Fq(z) be the rational function
field of the indeterminate z over the field Fq . Let S = (s1, · · · , sm)T be an m-
dimensional multi-sequence, where si = {si,t}t≥0 is an infinite sequence over Fq.
For any positive integer n, let S(n) = (s(n)

1 , · · · , s(n)
m )T be the length n prefix

of S, where s(n)
i = {si,t}n−1

t=0 . Then the problem of multi-sequence shift-register
synthesis is to determine a minimum l and a σ(x), where

σ(x) = σl + σl−1x+ · · ·+ σ1x
l−1 + xl ∈ Fq,

such that the following equation holds:

si,j + σ1si,j−1 + · · ·+ σlsi,j−l = 0,

for j = l, l + 1, · · · , n − 1 and i = 1, 2, · · · ,m. Namely, it is to find a LFSR of
shortest length capable of generating these m sequences. This minimum l and
the polynomial σ(x), denoted by Ln(S) and fn(s), is called the linear complexity
of S(n) and the minimal polynomial of S(n), respectively.

For a formal Laurent series α =
∑

t≥b atz
−t ∈ Fq((z−1))(at ∈ Fq), its discrete

valuation v(α) is defined by

v(α) =
{

+∞, if α = 0,
b, if ab 
= 0.
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Each α ∈ Fq((z−1)) can be written as a sum α = �α	 + {α}, where �α	 =∑
d≥−i≥0 aiz

−i is its polynomial part and {α} =
∑

1≤i<∞ aiz
−i is its remaining

part. Let Fq((z−1))m and Fq[z]m denote the set of all m-tuples over Fq((z−1))
and Fq[z] respectively. For the m-dimensional multi-sequence S = (s1, · · · , sm)T ,
we identify it with the m-tuple Laurent series
r = (r1(z), r2(z), · · · , rm(z))T ∈ Fq((z−1))m, where rj(z) =

∑
t≥0 sj,tz

−(t+1)

for 1 ≤ j ≤ m. The m-tuple (�r1(z)	, �r2(z)	, · · · , �rm(z)	)T ∈ Fq[z]m is called
the polynomial part of r and denoted as �r	, and the m-tuple
{r} = ({r1(z)}, {r2(z)}, · · · , {rm(z)})T ∈ Fq((z−1))m is called the remaining

part of r.

Multi-continued Fraction Algorithm (m-CFA, in Short):
Given a multi-Laurent series

r = (
∑
t≥0

s1,tz
−(t+1), · · · ,

∑
t≥0

sj,tz
−(t+1), · · · ,

∑
t≥0

sm,tz
−(t+1))T .

Initially, let v0,1 = · · · = v0,m = 0; a0 = 0; β
0

= (β0,1, · · · , β0,m)T = r. Repeat
the following rounds successively for k ≥ 1, and the k-th round consists of the
following five steps:

(1) vk = min{vk−1,j + v(βk−1,j)|1 ≤ j ≤ m}.
(2) hk = min{j|vk−1,j + v(βk−1,j) = vk, 1 ≤ j ≤ m}.
(3) vk,j = vk−1,j if j 
= hk and vk,hk

= vk.

(4) ρ
k

= (ρk,1, · · · , ρk,j , · · · , ρk,m)T ∈ F ((z−1))m, where ρk,j = βk−1,j

βk−1,hk

if j 
= hk

and ρk,hk
= 1

βk−1,hk

.

(5) ak =�ρ
k
	=(ak,1(z), · · · , ak,m(z))T ∈ Fq[z]m and β

k
= ρ

k
−ak ∈ Fq((z−1))m,

and set β
k

= (βk−1,1, · · · , βk−1,m)T .

As results, we get the following expansion:

C(S) = [a0 = 0, h1, a1, · · · , hk, ak, · · · ], 1 ≤ k <∞,

which is called the multi-continued fraction expansion (m-CFE, in short) of S.
Denote ak = (ak,1(z), · · · , ak,j(z), · · · , ak,m(z))T , ak,j(z) ∈ Fq[z]. It is known
that deg (ak,hk

(z)) ≥ 1. Associated with C(S), we define the following parame-
ters:

tk = deg(ak,hk(z)) ≥ 1, t0 = 0,

dk =
∑

1≤i≤k

ti, d0 = 0,

vk =
∑

hi=hk,1≤i≤k

ti, v0 = 0,

nk = dk−1 + vk,

l(k, j) = max{0, i | 1 ≤ i ≤ k, hi = j }, ∀ k ≥ 0.
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Then, based on the function l(k, j), we define a set of polynomials {qk(z)}k≥0

inductively :

q0(z) = 1,

q∗l(k,j)−1(z) =
{
ql(k,j)−1(z), if l(k, j) ≥ 1,
0 if l(k, j) = 0, k ≥ 1,

qk(z) = q∗l(k−1,hk)−1(z) +
∑

1≤j≤m

ak,j(z)q∗l(k,j)−1(z).

Similar to the one-dimensional case [7], the minimal polynomial and linear
complexity of the length n prefix S(n) of the m-dimensional multi-sequence S,
denoted by fn(S) and Ln(S) respectively, can be read out immediately from the
above parameters, as shown below.

Proposition 1. [6]
For any n such that nk ≤ n < nk+1, k ≥ 0, we have fn(S) = qk(z) and

Ln(S) = dk.

3 Method of Implementing m-CFA

In this section, we present a method of implementing the m-CFA on multi-
formal Laurent series over Fq(z) whose components are algebraic functions of
degree greater than 1.

Proposition 2. [15] Let n ≥ 2, and

f(Y ) = Y n + k1(z)d(z)Y n−1 + k2(z)d(z)Y n−2 +
· · ·+ kn−1(z)d(z)Y − d(z) ∈ Fq[z][Y ], (1)

where d(z), ki(z) ∈ Fq[z] for 1 ≤ i ≤ n− 1, kn−1(z)d(z) 
= 0, and deg kn−1(z) >
deg d(z) +max{deg ki(z) | 0 ≤ i ≤ n− 2}(k0 = 1). Then

(1) f(Y ) is irreducible in Fq(z)[Y ].
(2) There exists a unique root, denoted by γ, of f(Y ) in Fq((z−1)), i.e., f(γ) = 0.
(3) v(γ) = deg kn−1(z).

In the sequel we always let γ denote the unique root of any given polynomial
f(Y ) which is of the form as in (1).

Below we discuss how to implement the m-CFA on the (n-1)-tuple Laurent
series r = (γ, γ2, · · · , γn−1)T .

In implementing the k-th round of the m-CFA, we have to solve the following
problems:

(1) Compute v(βk−1,j), for 1 ≤ j ≤ m.
(2) Compute ak,j(z), for 1 ≤ j ≤ m.
(3) Decide whether the m-CFE has just finished a period (Later we will give the

definition of periodicity of a multi-continued fraction).
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3.1 Criterion for Periodicity Decision

The m-CFA is an iterative algorithm. For a general multi-formal Laurent se-
ries S, the result obtained after finite number of rounds in acting the m-CFA
on S gives only partial information about the m-CFE C(S). However, it gives
complete information whenever the m-CFE C(S) is ultimately periodic. In im-
plementing m-CFA, it is desired to know whether the m-CFE C(S) is periodic.
When C(S) is periodic, one should determine whether it enters into a period at
each round. However, the periodicity of C(S) is not guaranteed by the condition
(hλ+U , aλ+U ) = (hλ, aλ) for some λ ≥ 0 and U ≥ 1. Fortunately, a sufficient
condition for periodic m-CFE C(S) and a criterion for the fact that the pro-
cess of the m-CFA acting on a S is entering in a period are found. We give the
relevant results as below.

Definition 1. Let C(S) = [a0 = 0, h1, a1, · · · , hk, ak, · · · ] be the m-CFE of S .
C(S) is called (λ, U)-periodic for some integers λ ≥ 1 and U ≥ 1 if it satisfies
the following conditions:

(hλ+k, aλ+k) = (hλ+k+U , aλ+k+U ), ∀k ≥ 0. (2)

We denote [a0 = 0, h1, a1, · · · , hk, ak, · · · ] simply by[
0, h1, a1, · · · , hλ−1, aλ−1, · · · , hλ, aλ, hλ+1, aλ+1, · · · , hλ+U−1, aλ+U−1

]
if C(S)

is (λ, U)-periodic.

Proposition 3. Let C(S) = [a0 = 0, h1, a1, h2, a2, · · · , hk, ak, · · · ] be the m-
CFE of S, which is obtained by the actiing m-CFA on S. If there exist integers
λ ≥ 1 and U ≥ 1 such that β

λ−1
= β

λ−1+U
and vλ−1+U,j − vλ−1,j = vλ−1+U,i −

vλ−1,i hold true for 1 ≤ i ≤ j ≤ m, then C(S) is (λ, U)-periodic.

Proof. Induction on k.
Let Δk−1 = Diag. (z−vk,1 , z−vk,2 , · · · , z−vk,m) be a diagonal matrix. Let Iv

be the indexed valuation defined in [6]. From [6] we have

(hλ+U , vλ+U ) = Iv(Δλ−2+Uβλ−1+U )
= Iv(zlΔλ−2βλ−1)
= (hλ, vλ + v(zl))
= (hλ, vλ − l).

So hλ+U = hλ, together with βλ−1 = βλ−1+U , we have ρλ = ρλ+U . It follows
that aλ = aλ+U , βλ = βλ+U . Thus for k = λ, we have proved that (hk, ak) =
(hk+U , ak+U ).

Next, since zlΔλ−2 = Δλ−2+U and vλ+U = vλ − l, by the definition of Δk,
we have zlΔλ−1 = Δλ−1+U .

So, we can do the above procedure inductively, and the proposition follows.

3.2 Method of Computing Valuation and Polynomial Part

Since β
0

= (γ, γ2, · · · , γn−1)T , it is easy to see by induction that βk−1,j belongs
to the field Fq(z)(γ) for k ≥ 1, 1 ≤ j ≤ m. By Proposition 2, f(Y ) in 1 is
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irreducible over Fq(z), so each element α ∈ Fq(z)(γ) can be uniquely expressed
by α = c1γ

n−1 + c2γ
n−2 + · · ·+ cn, where ci ∈ Fq(z). We call this representation

a normalized form of α.
Given f1(Y ) = c1Y

n−1 + c2Y
n−2 + · · ·+ cn ∈ Fq(z)[Y ]. In order to compute

v(f1(γ)) in a computer program, it is convenient to find μ ∈ Fq(z) such that
v(f1(γ)) = v(f1(μ)). Similarly for computing �f1(γ)	, we find μ ∈ Fq(z) such
that �f1(γ)	 = �f1(μ)	.

Therefore, we can solve the problem of computing v(βk−1,j) and ak,j(z) by
setting up three subprograms(PROCEDURES): Normalization(), Valua-
tion() and Polynomial-Part(). For any α ∈ Fq(z)(γ), Normalization(α)
returns the normalized form of α; for any α ∈ Fq(z)(γ) in normalized form,
Valuation(α) and Polynomial-Part(α) returns the valuation and polynomial
part of α respectively. These procedures are mainly based on the following:

Proposition 4. [18](Newton approximation) Let O={α|v(α)≥0, α∈Fq((z−1))}.
Suppose g(Y ) ∈ O[Y ], a0 ∈ O and∞ 
= v(g(a0)/g

′
(a0)2) > 0, then the sequence

induced by the following iterative relation

ai+1 = ai − g(ai)/g
′
(ai), i = 0, 1, 2, · · · ,

satisfies

(1) lim
i→∞

ai = a ∈ O , and g(a) = 0.

(2) v(a− ai) ≥ 2iv(g(a0)/g
′
(a0)2).

Now we return to equation 1. It can be transformed into

g(Y ) =
1

kn−1(z)d(z)
Y n +

k1(z)
kn−1(z)

Y n−1 + · · ·+ Y − 1
kn−1(z)

= 0. (3)

Take a0 to be 0. It is easy to check that g(Y ) in 3 satisfies the condition in Propo-
sition 4. Thus, by applying the Newton approximation to g(Y ) , we get a sequence
{ai}∞i=0 satisfying ai ∈ Fq(z), lim

i→∞
ai = γ and v(γ − ai) ≥ 2iv(1/kn−1(z)).

Proposition 5. Let {ai}∞i=0 be defined as in Proposition 4 with g(Y ) in (3).
Suppose f1(Y ) = c1Y

n−1 + c2Y
n−2 + · · · + cn ∈ Fq(z)[Y ] is a nonconstant

polynomial in Y. Then there exists an integer N such that v(f1(γ)) = v(f1(ai)),
for all i ≥ N.

Proof. Let X be a undetermined element different from Y. Then

f1(X)− f1(Y ) = (X − Y )h(X,Y ),

where 0 
= h(X,Y ) =
∑

cjkX
jY k, 0 ≤ j, k ≤ n−2, cjk ∈ Fq(z). Since v(γ−ai) ≥

2iv(1/kn−1(z)), then v(γ) = v(ai) for i large enough. Thus,

v(f1(ai)− f1(γ)) = v((ai − γ)h(ai, γ))
= v(ai − γ) + v(h(ai, γ))
≥ 2iv(1/kn−1(z)) +min{v(cjk) + (j + k)v(γ)}
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for i large enough. Therefore lim
i→∞

v(f1(ai) − f1(γ)) = +∞. Since f1(γ) 
= 0, we

have v(f1(γ)) < +∞. So there must exist an integer N such that v(f1(ai) −
f1(γ)) > v(f1(γ)), i ≥ N ; that is v(f1(ai)) = v(f1(γ)) for i ≥ N.

Remark 1. In order to compute v(f1(γ)), we compare the value of 2iv(1/kn−1(z))
+ v(h(ai, γ)) with v(f1(ai)) for each i from i = 1 to i = N such that N is
the least integer satisfying 2Nv(1/kn−1(z)) + v(h(aN , γ)) > v(f1(aN )). Then
v(f1(aN )) = v(f1(γ)) by Proposition 5. In fact, such an N can be soon found
since 2iv(1/kn−1(z)) + v(h(ai, γ)) increases exponentially in respect to i while
v(f1(ai)) is bounded.

Proposition 6. Let {ai}∞i=0 be defined as in Proposition 4 with g(Y ) in 3. Sup-
pose f1(Y ) = c1Y

n−1+c2Y
n−2+· · ·+cn ∈ Fq(z)[Y ] is a nonconstant polynomial

in Y. Then there exists an integer N such that �f1(γ)	 = �f1(ai)	, for all i ≥ N.

Proof. From the proof of Proposition 5 we know, lim
i→∞

v(f1(ai) − f1(γ)) = +∞.
So there must exist an integer N such that v(f1(ai) − f1(γ)) > 0, i ≥ N. That
is �f1(γ)	 = �f1(ai)	 for i ≥ N.

Remark 2. In order to compute �f1(γ)	, we compare the value of 2iv(1/kn−1(z))
+ v(h(ai, γ)) with 0 for each i from i = 1 to i = N such that N is the least
integer satisfying 2Nv(1/kn−1(z)) + v(h(aN , γ)) > 0. Then �f1(γ)	 = �f1(aN )	
by Proposition 6. In fact, such an N can be soon found since 2iv(1/kn−1(z)) +
v(h(ai, γ)) increases exponentially in respect to i.

Let f(Y ) be defined as in 1. Then we set up the three subprograms as follows.
– PROCEDURE Normalization(α) :

On input α ∈ Fq(z)(γ), it must has the form α = g1(γ)
g2(γ) , where g1(Y ), g2(Y )

∈ Fq(z)[Y ]. By Euclid division algorithm, we can get h2(Y ) ∈ Fq(z)[Y ] such
that h2(γ)g2(γ) ≡ 1 (mod f(γ)). Again by the Euclid division algorithm, we
get c1γn−1 + c2γ

n−2 + · · ·+ cn ≡ h2(γ)g1(γ) (mod f(γ)) for ci ∈ Fq(z), i =
1, 2, · · · , n. Then c1γ

n−1 + c2γ
n−2 + · · ·+ cn is the normalized form of α.

Return c1γ
n−1 + c2γ

n−2 + · · ·+ cn.
– PROCEDURE Valuation(α) :

On input α ∈ Fq(z)(γ) in normalized form. By Proposition 5 we find aN

such that v(α) = v(c1an−1
N + c2a

n−2
N + · · · + cn). Since ci, aN ∈ Fq(z),

there exist h1(z), h2(z) ∈ Fq[z] such that c1an−1
N + c2a

n−2
N + · · · + cn =

h1(z)
h2(z) , gcd(h1(z), h2(z)) = 1. Therefore, v(α) = v(c1an−1

N + c2a
n−2
N + · · · +

cn) = deg(h2(z))− deg(h1(z)).
Return deg(h2(z))− deg(h1(z)).

– PROCEDURE Polynomial-Part(α) :
On input α ∈ Fq(z)(γ) in normalized form. we can get FN (α) = f1(γ) =
c1γ

n−1+c2γ
n−2+ · · · +cn. By Proposition 6 we find aN such that �c1γn−1

+c2γ
n−2+ · · · +cn	 = �c1an−1

N +c2a
n−2
N + · · · +cn	. Since ci, aN ∈ Fq(z),

there exist h1(z), h2(z)∈Fq[z] such that c1an−1
N +c2a

n−2
N + · · · + cn = h1(z)

h2(z) ,

gcd(h1(z), h2(z)) = 1. Let q(z) be the quotient of h1(z) divided by h2(z) in
Fq[z], q1(z) ≡ q(z) (mod f(γ)), then �α	 = q1(z).
Return q1(z).
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3.3 Program for the Implementation of m-CFA

In this subsection, we give a program to implement the m-CFA on a multi-
formal Laurent series r = (γ, γ2, · · · , γn−1)T , where γ is the unique root of f(Y )
in Fq((z−1)), and f(Y ) is defined as in (1). Let m = n − 1 in the following
program.

Program:
Input: v0,1 = · · · = v0,m = 0; a0 = 0; β

0
= r = (γ, γ2, · · · , γn−1)T .

Output: C(r).

(1) for k = 1 to l ( a chosen positive integer large enough ) do
(1.1) βk−1,j ← Normalization(βk−1,j), 1 ≤ j ≤ m
(1.2) v(βk−1,j)← Valuation(βk−1,j), 1 ≤ j ≤ m
(1.3) vk ← min{vk−1,j + v(βk−1,j)|1 ≤ j ≤ m}
(1.4) hk ← min{j|vk−1,j + v(βk−1,j) = vk, 1 ≤ j ≤ m}
(1.5) vk,j ← vk−1,j if j 
= hk

vk,hk
← vk

(1.6) ρk,j ← βk−1,j

βk−1,hk

if j 
= hk

ρk,hk
← 1

βk−1,hk

ρ
k
← (ρk,1, · · · , ρk,j , · · · , ρk,m)T

(1.7) ρk,j ←Normalization(ρk,j), 1 ≤ j ≤ m
(1.8) ak,j(z)←Polynomial-Part(ρk,j), 1 ≤ j ≤ m

ak ← (ak,1(z), · · · , ak,m(z))T

β
k

= (βk−1,1, · · · , βk−1,m)T ← (ρ
k
− ak)

(1.9) If there exist an integer 1 ≤ λ ≤ k = λ − 1 + U such that β
λ−1

= β
k
,

and vk,j − vλ−1,j = vk,i − vλ−1,i, for1 ≤ i ≤ j ≤ m, then C(r) ←[
0, h1, a1, · · · , hλ−1, aλ−1, hλ, aλ, hλ+1, aλ+1, · · · , hλ+U−1, aλ+U−1

]
return C(r)
end Program

(1.10) C(r)← [a0 = 0, h1, a1, · · · , hk, ak]
(2) return C(r)
(3) end Program

Remark 3. Here we restrict β
0

to a special form β
0

= (γ, γ2, · · · , γn−1)T , be-
cause this is a typical form that is discussed in some references such as [15] and
[16]. In fact, if β

0
= (f1(γ), f2(γ), · · · , fn−1(γ))T , where fi(γ) ∈ Fq(z)(γ) for all

i, our program still works.

4 Application of the Implementing of m-CFA

In this section we give some examples of applying our implementing m-CFA to
the multi-formal Laurent series (γ, γ2)T , where γ is a root of an irreducible poly-
nomial f(Y ) of degree 3 over F2(z) with the form as shown in the equation (1).



256 Q. Wang, K. Wang, and Z. Dai

Denote by S the multi-sequences corresponding to (γ, γ2)T . It is worth point-
ing out that these S are all non-periodic, since γ is irrational. The experiment
results show that their multi-continued fraction expansions are all periodic. As
applications, the linear complexity and minimal polynomial profiles for these S
are obtained.

– Example 1: Let r =
(
γ
γ2

)
, where γ is the root of Y 3 + k(z)Y − 1 = 0,

k(z) ∈ F2[z], deg k(z) > 0. The m-CF expansion of r is as follows.

C(r) =

[(
0
0

)
, 1,
(
k(z)

0

)
, 2,
(

0
k(z)

) ]
.

Let τ = deg(k(z)). From Proposition 1 we get dk = kτ , vk = �k+1
2 	τ ,

nk = (k − 1 + �k+1
2 	)τ , q0(z) = 1, q1(z) = k(z), q2(z) = k(z)2 and qk(z) =

k(z)qk−1(z) + qk−3(z) for all k ≥ 3. Hence, we get

(fn(S), Ln(S)) = (qk(z), kτ), ∀ (k − 1 + �k + 1
2
	)τ ≤ n < (k + 1 + �k

2
	)τ.

– Example 2: Let r =
(
γ
γ2

)
, where γ is the root of Y 3+z2Y 2+z4Y −z = 0.

The m-CFE of r is as follows.

C(r) =

[(
0
0

)
, 1,
(
z3

0

)
, 2,
(
z
z3

)
, 2,
(

0
z2

)
, 1,
(
z2

0

) ]
.

Then we have the following table:

k vk dk nk

4i+ 1 5i+ 3 10i+ 3 15i+ 3
4i+ 2 5i+ 3 10i+ 6 15i+ 6
4i+ 3 5i+ 5 10i+ 8 15i+ 11
4i+ 4 5i+ 5 10i+ 10 15i+ 13

For i ≥ 0, we have

l(4i+ j, h) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if h = 2, j = 1, i = 0,
4i+ j if h = 1, j = 1, 4,
4i− 1 if h = 2, j = 1, i > 0,
4i+ 3 if h = 2, j = 4,
4i+ j if h = 2, j = 2, 3,
4i+ 1 if h = 1, j = 2, 3;

then q1(z) = z3, q2(z) = z + z6, q3(z) = z8, q4(z) = 1 + z10 and for i ≥ 1,

q4i+j(z) =

⎧⎪⎪⎨⎪⎪⎩
q4i−1(z) + z3q4i(z) if j = 1,
q4i−2(z) + zq4i(z) + z3q4i+1(z) if j = 2,
q4i+1(z) + z2q4i+2(z) if j = 3,
q4i(z) + z2q4i+3(z) if j = 4.
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Based on Proposition 1, for i ≥ 1 we get

(fn(S), Ln(S)) =

⎧⎪⎪⎨⎪⎪⎩
(q4i+1(z), 10i+ 3) if 15i+ 3 ≤ n < 15i+ 6,
(q4i+2(z), 10i+ 6) if 15i+ 6 ≤ n < 15i+ 11,
(q4i+3(z), 10i+ 8) if 15i+ 11 ≤ n < 15i+ 13,
(q4i+4(z), 10i+ 10) if 15i+ 13 ≤ n < 15(i+ 1) + 3.

Remark 4. The above computations of C(r) were done on a Pentium IV proces-
sor using Mathematica.
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The Hausdorff Dimension of the

Set of r-Perfect M -Multisequences
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{vielhaber, monicadelpilar}@gmail.com

Abstract. We introduce a stochastic infinite state machine (Markov
chain) BDM, the “Battery–Discharge–Model”, which keeps track of all
linear complexities of all qM·n prefixes of length n of M -multisequences
over Fq.

We then use a finite subset of the BDM, dealing with those multi-
sequences which are r-perfect. The largest eigenvalue λ of its transition
matrix then yields the Hausdorff dimension of the set of r-perfect mul-
tisequences as

DH = 1 +
logq(λ)

M
.

Also, we give a general formula for 1-perfect multisequences, for any M
and q.

Keywords: Linear complexity, multisequence, Battery Discharge Model,
isometry, Hausdorff dimension, perfect linear complexity profile.

1 Introduction

For a multisequence a ∈
(
F

M
q

)∞ with M symbols of the finite field Fq in parallel,
its linear complexity La(n) is the least length of an LFSR able to produce all M
prefix rows of length n with appropriate initial contents.

Since La(n) ≈ �n · M
M+1� typically (and exactly for q → ∞), we define the

linear complexity deviation d(n) := La(n)−�n · M
M+1� and expect d ≈ 0 for all n.

In this paper, we first recall the multi Strict Continued Fraction Algorithm
(mSCFA) by Dai and Feng and introduce our Battery–Discharge–Model (BDM).
The BDM is a stochastic infinite state machine which keeps track of all linear
complexity deviations of all multisequences in

(
F

M
q

)∞.
r-perfectness for M > 1 was introduced first by Xing [6]. However, we define

two different (for M > 1) notions of r-perfectness (distinct to Xing’s model as
well) and the finite portion of the BDM which corresponds to dealing only with
r-perfect multisequences.

We then introduce the concept of Hausdorff dimension and its connection to
the largest eigenvalue of the transition matrix of the finite subset of the BDM.

We finish with explicit numerical values for r = 1, . . . , 5, M = 1, . . . , 4, and
q = 2, 3, 4, 5, 8, 16. We also give a general formula for r = 1, for any M and q.
� Supported by Project FONDECYT 2004, No. 1040975 of CONICYT, Chile.
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2 Diophantine Approximation of Multisequences

We start with the multi–strict continued fraction algorithm (mSCFA) by Dai
and Feng [2]. The mSCFA calculates a best simultaneous approximation to a
set of M formal power series Gm =

∑∞
t=1 am,tx

−t ∈ Fq[[x−1]], 1 ≤ m ≤ M. It
computes a sequence (u(m,n)

m /v(m,n)) of approximations in Fq(x), in the order
(m,n) = (M, 0), (1, 1), (2, 1), . . . , (M, 1)(1, 2, ), (2, 2), . . . with

Gm =
∑
t∈N

am,t · x−t =
u

(m,n)
m (x)
v(m,n)(x)

+ o(x−n), ∀ 1 ≤ m ≤M,n ∈ N0.

We will denote the degree of v(m,n)(x) by deg(m,n) ∈ N0 instead of d as in [2]
(we will use d differently). Then the multisequence has the linear complexity
profile (deg(M,n))n∈N0 = (L(Gm,1≤m≤M)(n))n∈N0 .

The mSCFA also uses M auxiliary degrees w1, . . . , wM ∈ N0. The update of
these values depends on a so–called “discrepancy” δ(m,n) ∈ Fq. δ(m,n) is zero
if the current approximation predicts correctly the value am,n, and δ(m,n) is
nonzero otherwise. Furthermore, the polynomials um(x) and v(x) are updated,
crucial for the mSCFA, but of no importance for our concern.

Algorithm 1. mSCFA
deg := 0;wm := 0, 1 ≤ m ≤M
FOR n := 1, 2, . . .

FOR m := 1, . . . ,M
compute δ(m,n) //discrepancy
IF δ(m,n) = 0: {} // do nothing, [2, Thm. 2, Case 2a]
IF δ(m,n) 
= 0 AND n− deg−wm ≤ 0 : {} // [2, Thm. 2, Case 2c]
IF δ(m,n) 
= 0 AND n− deg−wm > 0: // [2, Thm. 2, Case 2b]

deg copy := deg
deg := n− wm

wm := n− deg copy
ENDFOR

ENDFOR

The linear complexity grows like deg(M,n) ≈
⌈
n · M

M+1

⌉
(exactly, if always

δ(m,n) 
= 0), and the wm ≈
⌊

n
M+1

⌋
. We therefore extract the deviation from

this average behaviour as

d := deg−
⌈
n · M

M + 1

⌉
, (1)

the degree deviation, which we call the “drain” value, and

bm :=
⌊
n · 1

M + 1

⌋
− wm, 1 ≤ m ≤M, (2)

the deviation of the auxiliary degrees, which we call the “battery charges.”
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We establish the behaviour of d and bm in two steps. First we treat the change
of d, bm when increasing n to n+ 1 (keeping deg, wm fixed for the moment):

−
⌈
(n+ 1) · M

M + 1

⌉
=

⎧⎨⎩−1−
⌈
n · M

M+1

⌉
, n 
≡M mod M + 1,

−
⌈
n · M

M+1

⌉
, n ≡M mod M + 1,

(3)

and ⌊
(n+ 1) · 1

M + 1

⌋
=

⎧⎨⎩
⌊
n · 1

M+1

⌋
, n 
≡M mod M + 1,

1 +
⌊
n · 1

M+1

⌋
, n ≡M mod M + 1.

(4)

Hence, by (3) we have to decrease d in all steps, except when n ≡ M →
n ≡ 0 mod (M + 1), and only here we increase all M battery values bm, by (4).

With d(M, 0) = bm(M, 0) := 0, ∀m, initially, we obtain the invariant

d(M,n) +

(
M∑

m=1

bm(M,n)

)
+ n mod (M + 1) = 0, ∀n ∈ N0. (5)

Now, for n fixed, the M steps of the inner loop of the mSCFA change wm and
deg only in the case of δ(m,n) 
= 0 and n− deg−wm > 0 that is

n−deg−wm > 0
(1;2)⇐⇒ n−(d+

⌈
n · M

M + 1

⌉
)−(
⌊
n · 1

M + 1

⌋
−bm) > 0⇔ bm > d.

In the case δ 
= 0 and bm > d, the new values are (see mSCFA)

deg+ = n− wm and w+
m = n− deg (6)

and thus in terms of the BDM variables:

d+ (1;6)
= (n− wm)−

⌈
n ·M
M + 1

⌉
(2)
=
⌊

n

M + 1

⌋
+ bm −

⌊
n

M + 1

⌋
= bm

and

b+m
(2;6)
=
⌊

n

M + 1

⌋
− (n− deg)

(1)
= −

⌈
n ·M
M + 1

⌉
+ (d+

⌈
n ·M
M + 1

⌉
) = d,

an interchange of the values d and bm. We say in this case that “battery bm
discharges (the excess of charge) into the drain”. A discharge does not affect the
invariant (5), which is thus valid for every timestep (m,n).

3 mSCFA and BDM Induce an Isometry on
(

FM
q

)∞

We want to combine the effects of all qM·n prefixes of length n:
If we arrive in E cases out of the qM·n prefix strings, in a certain configuration

(w1, . . . , wM , deg), then we want to have a mass (probability) of E/qM·n on
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the corresponding state of the probabilistic analogue, (b1, . . . , bM , d), with d, bm
depending on deg, wn according to (1), (2).

In the limit n → ∞, we will then obtain d as a probability distribution
over all multisequences (am,n) ∈

(
FM

q

)∞. Since we do not actually compute
the discrepancy δ, we have to model the distinction between δ = 0 and δ 
= 0
probabilistically.

Proposition 1. In any given position (m,n), 1 ≤ m ≤ M,n ∈ N of the formal
power series, exactly one choice for the next symbol am,n will yield a discrepancy
δ = 0, all other q − 1 symbols from Fq result in some δ 
= 0.

Proof. The current approximation u
(m,n)
m (x)/v(m,n)(x) determines exactly one

approximating coefficient sequence for the m-th formal power series Gm. The
(only) corresponding symbol belongs to δ = 0. �

In fact, for every position (m,n), each discrepancy value δ ∈ Fq occurs exactly
once for some am,n ∈ Fq, in other words (see [1][5] for M = 1):

Fact. The mSCFA induces an isometry on
(
FM

q

)∞.

Hence, we can model δ = 0 as occurring with probability 1/q, and δ 
= 0 as
having probability (q − 1)/q.

4 The Battery–Discharge–Model: A Stochastic Infinite
State Machine

In this partwe describe a stochastic infinite state machine, the Battery–Discharge–
Model. Our model shall compute the measure (probability) of prefixes with certain
linear complexity profiles. As before, let M ∈ N be the number of sequences over
Fq to be approximated simultaneously. We considerM battery values bm ∈ Z, 1 ≤
m ≤M and a drain d ∈ Z, which gives the linear complexity deviation.

The model is self–similar in time: Assume that the automaton is in the same
state (b1, . . . , bM , d) (with mass 1) for two timesteps n1 ≡ n2 mod M + 1. Then
for every τ ∈ N, the resulting probability distribution over all qM·τ prolongations
of the two sequence prefixes at times n1+τ and n2+τ , resp., is the same. However,
we have to distinguish time mod M + 1 to be able to adjust bm := bm + 1, 1 ≤
m ≤M (n ≡ 0 mod M + 1) or d := d− 1 (n 
≡ 0 mod M + 1).

The state set of our Battery–Discharge-Model is

S :=

{
(b1, . . . , bM ; d, t) ∈ Z

M × Z× {0, . . . ,M}:
M∑

m=1

bm + d+ t = 0

}

(battery values; drain, time mod M + 1) with initial state (0, . . . , 0; 0, 0) =: s0.
We attach the following three actions to the cases of [2, Thm. 2]:
D, battery discharge: A battery can discharge, provided its charge is higher

than that of the drain, bm > d, moving the excess charge to d, and it does so with
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probability (q− 1)/q, action am = D for battery bm, when δ 
= 0, corresponding
to case 2b of [2, Thm. 2].
I, inhibition: A battery, although having a charge bm > d higher than the

drain, does not discharge, since it is inhibited by δ = 0 with probability 1/q,
modeling case 2a with bm > d, action am = I.
N , do nothing: If bm ≤ d, the action is am = N , do nothing (case 2c and part

of 2a).
The probabilistic version of the mSCFA is then:

Algorithm BDM
d := 0; bm := 0, 1 ≤ m ≤M
FOR n := 1, 2, . . .

IF n ≡ 0 mod M + 1 : bm := bm + 1, 1 ≤ m ≤M ELSE d := d− 1 ENDIF
FOR m := 1, . . . ,M

IF bm > d:
WITH prob. (q − 1)/q:

swap(bm, d) // action D
WITH prob. 1/q:
{} // action I

ELSE
{} // action N

ENDIF
ENDFOR

ENDFOR

We combine the actions at the M batteries to a word a = a1 . . . aM ∈
{D, I,N}M , describing a transition between states from S.

Let dm be the value of the drain before the action of battery bm that is

dm+1 =

⎧⎨⎩
d, m+ 1 = 1,
dm, am ∈ {I,N},
bm, am =D. Then s

a→ s′ is feasible, if bm > dm for am∈{D, I}
and bm ≤ dm for am = N , and the probability then is

prob(a) =
(
q − 1
q

)aD

·
(

1
q

)aI

·
(
q

q

)aN

=
(q − 1)aD

qaD+aI
,

where aD, aI , aN are the number of occurrences in a of the respective symbol.
We define a probability or mass distribution μn(s) for timestep n ∈ N0 and

state s ∈ S as follows. Initially (n = 0), let μ0(s0) = 1 and μ0(s) = 0 for
s ∈ S\{s0}. Also, let ST = {s ∈ S | s.t = T }, for 0 ≤ T ≤M .

With every step n ∈ N, we update the mass distribution of the states in ST

with T ≡ n mod M + 1. The total mass a state s′ ∈ ST receives, is μn+1(s′) =∑
s

a→s′ μn(s) ·prob(a). After the first M+1 steps, we thus have
∑

s∈ST
μn(s) = 1

for each 0 ≤ T ≤M , and so
∑

s∈S μn(s) = M + 1 for n ≥M + 1.
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To give an example, let M = 3 and s = (0, 2, 1;−3, 0). We first decrement d
by (3) (and increment t) to (0, 2, 1;−4, 1), and then have 6 feasible transitions:

a1 a2 a3 prob(a) s′ a1 a2 a3 prob(a) s′

D D N (q − 1)2/q2 (−4, 0, 1; 2, 1) I D N (q − 1)/q2 (0,−4, 1; 2, 1)
D I D (q − 1)2/q3 (−4, 2, 0; 1, 1) I I D (q − 1)/q3 (0, 2,−4; 1, 1)
D I I (q − 1)/q3 (−4, 2, 1; 0, 1) I I I 1/q3 (0, 2, 1;−4, 1)

For instance, the first transition of the second line consists of these actions:

(0, 2, 1;−4, 1)
D; q−1

q−→ (−4, 2, 1; 0, 1)
I; 1

q−→ (−4, 2, 1; 0, 1)
D; q−1

q−→ s′ = (−4, 2, 0; 1, 1)

In the next section, we will consider the notion of r-perfect multisequences,
defined by the allowed states from S that may be touched.

5 r-Perfect Multisequences

The notion of r-perfect linear complexity profiles can be described by two equi-
valent conditions for M = 1: The r-perfect multisequences are those, whose
linear complexity deviation d is bounded by

−r − t+ 1
2

≤ d ≤ r − t
2

(7)

forever (where t ∈ {0, 1}). Equivalently (for M = 1), these sequences are just
those where all partial denominator degrees are at most r (jumps by no more
than |bm − d| ≤ r).

For M > 1, we adjust the inequality (7) for d to

−r − εL

2
≤ d ≤ r − εH

2
,with εL =

{
1, t < M/2,
0, t ≥M/2, and εH =

{
0, t ≤M/2,
1, t > M/2, (8)

and call all multisequences, which only touch BDM states satisfying (8) “r-L–
perfect” (L: linear complexity).

However, there may be several partial denominators, all of degree at most r,
in one transition, whose combined effect is to move between states with d outside
the range of r-L–perfectness. Hence, the two conditions are no longer equivalent
for M > 1, and we define r-J–perfect as |bm − d| ≤ r (J: jump height).

In both cases the interesting value is the Hausdorff dimension of the sets
AL(r;M, q) and AJ (r;M, q) ⊂

(
FM

q

)∞ ≡ [0, 1] ⊂ R of r-L–perfect resp. r-J–
perfect M -multisequences over Fq. Certainly, if some multisequence a is r-L-
perfect, then a is also r-J–perfect, hence DH(AL) ≤ DH(AJ ).

Xing [6] has generalized the notion of perfectness [4] to M > 1 by defining
rX -perfect ⇔ d ≥ �(M(n+ 1)− rX)/(M + 1)� − �Mn/(M + 1)� . However, the
same r should give a higher Hausdorff dimension for larger M (more choices
possible), which is the case with both r-L and r-J, but not with rX .

Definition 1. Let TL(r;M, q) be the transition matrix over the set of states
satisfying (8), and TJ (r;M, q) the matrix for states from which we may eventually
return to s0 via actions with all am = D satisfying |bm − dm| ≤ r.

Let the largest eigenvalue of TL/J(r;M, q) be λL/J(r;M, q) ∈ R.
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λL/J(r;M, q) ∈ R is strictly less than 1, since TL/J(r;M, q) is substochastic, and
we will obtain the Hausdorff dimension as

DH(AL/J(r;M, q)) =
log(λL/J (r;M, q) · qM )

log qM
= 1 +

logq(λL/J(r;M, q))
M

,

as will be explained in more detail in the next section. All the λ are roots of
polynomials in Z[q], since TL/J (r;M, q) is a finite matrix with entries of the form∑

i (q − 1)ai/qbi .
For computational stability, it is usually preferable to use the (M+1)-st power

of the transition matrix to return immediately to states with t = 0. The largest
eigenvalue of that matrix is just λM+1.

6 Hausdorff Dimension

This section is taken essentially from [4], following the introduction of the Haus-
dorff dimension given in Chapter 2 of Falconer [3] for a subset A of the reals.
Set

hs
ε(A) = inf

∞∑
i=1

|Ui|s for s ≥ 0, ε > 0,

where the infimum runs over all covers U = {U1, U2, . . .} of A with intervals Ui

of length |Ui| ≤ ε, and letting ε→ 0:

hs(A) := lim
ε→0+

hs
ε(A).

Then

hs(A) =
{

0, s > DH(A)
∞, s < DH(A)

for a certain real number DH(A) (hDH (A)(A) may assume any value in [0,∞]).

Definition 2. The Hausdorff dimension of a set A is defined as

DH(A) = inf{s|hs(A) = 0}
= sup{s|hs(A) =∞}.

Remark. The definition of hs
ε(A) and thus of hs(A) involves an infimum. Thus,

an upper bound for the Hausdorff dimension is considerably easier to obtain
than a lower bound. For the former, one essentially defines a sequence of covers
U (k) = {U1

(k), U2
(k), . . .}, where |Ui

(k)| ≤ εk and εk → 0. If then
∑∞

i=1 |U
(k)
i |s

remains bounded for every cover of the sequence, the infimum cannot be infinity.
Hence the candidate s actually is an upper bound.

On the contrary, if s is below the Hausdorff dimension, it will lead to a sum∑∞
i=1 |U

(k)
i |s = ∞ for each and every cover, and so the infimum cannot be

determined in this way. Here we have to apply an analog of the Mass Distribution
Principle (see Theorem 4.2 in [3]). Other special techniques to get lower bounds
are given in Chapter 4 of [3].
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Lemma 1. [4] Let ν be a mass distribution on some set A ⊆ [0, 1] ⊂ R. We
assume that for a given s there exist two real numbers c > 0 and δ > 0 such that

ν(U) ≤ c · |U |s

for all intervals U ⊆ [0, 1] with |U | ≤ δ. Then DH(A) ≥ s.

Proof. Let 0 < ε ≤ δ. Let U = {Ui} be any cover of A by intervals Ui ⊆ [0, 1] of
length |Ui| ≤ ε ≤ δ. Then

0 < ν(A) = ν

(⋃
i

Ui

)
≤
∑

i

ν(Ui) ≤ c ·
∑
|Ui|s,

hence ∑
i

|Ui|s ≥
ν(A)
c

.

It follows that the infimum over all U gives

hs
ε(A) ≥ ν(A)

c
for all ε ≤ δ,

and so hs(A) ≥ ν(A)/c > 0, hence s ≤ DH(A). �

Definition 3. An N -ary interval of degree k,N ∈ N, k ∈ N0, is an interval of
the form [r ·N−k, (r + 1) ·N−k), 0 ≤ r ≤ Nk − 2, r ∈ N0, or [1−Nk, 1].

Lemma 2. [4] Consider a nonempty subset A ⊆ [0, 1] ⊂ R of the reals and N -
ary intervals with N ≥ 2. Let there be a natural number S ≤ N such that for each
k ∈ N0 we have: If an N -ary interval I of degree k has nonempty intersection
with A, then exactly S of the N -ary subintervals of I of degree k + 1 also have
nonempty intersection with A. In this case

DH(A) ≥ logS
logN

.

Proof. Each interval U ⊂ [0, 1] with |U | < 1 satisfies an inequality N−k−1 ≤
|U | < N−k for a certain k ∈ N0. Thus, U can intersect at most two N -ary
intervals of degree k.

Define a mass distribution ν on A such that each of the Sk N -ary intervals
of degree k (of length N−k) that intersect A contains a mass of S−k. The mass
that is covered by U can thus be bounded by ν(U) ≤ 2 · S−k.

For s := (logS)/(logN) we therefore obtain

ν(U) ≤ 2 · S−k = 2 · (N−k)s = 2 ·Ns · (N−k−1)s

≤ 2 ·Ns · |U |s

≤ 2 ·N · |U |s,

where we used that 0 ≤ s ≤ 1. Now we can apply Lemma 1. �
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Example 1. Let N = 3 and S = 2. This describes the Cantor set, and indeed
(log 2)/(log 3) is its Hausdorff dimension.

Definition 4. The space
(
FM

q

)∞ of all infinite multisequences can be mapped
onto the unit interval [0, 1] by

ι := ιqM :
(
F

M
q

)∞ % (ai,j) M ∞
i=1,j=1 �→

M∑
i=1

∞∑
j=1

ψ(ai,j)q−i−M·j+M ∈ [0, 1] ⊂ R,

where ψ is a fixed bijection from Fq to {0, 1, . . . , q − 1}.

If AL/J(r;M, q) ⊂
(
FM

q

)∞ is the set of r-L/J–perfect multisequences, then we
study the subset BL/J(r;M, q) := ι

(
AL/J(r;M, q)

)
of [0, 1].

Theorem 2. For all r ∈ N,M ∈ N and prime powers q we have

DH

(
BL/J(r;M, q)

)
= 1 +

logq(λL/J(r;M, q))
M

,

where logq denotes the logarithm to the base q and λL/J(r;M, q) is as in
Definition 1.

Proof. We first show an upper bound for the Hausdorff dimension. Let A :=
AL/J(r;M, q), B := BL/J(r;M, q), and λ := λL/J(r;M, q). Since λ is the largest
eigenvalue of the transition matrix, starting from one sequence (the empty one,
ε) at t = 0, for every h ∈ N there exists a constant Ch such that for all t ∈ N0,
there are at most Ch ·

(
qM
(
λ+ 1

h

))t prefixes of length t in the set A. Each initial
multistring of length t and width M defines a cylinder set in

(
FM

q

)∞ consisting
of all infinite continuations of this string. The image of each such cylinder set
under the map ι is a closed interval of length q−Mt in [0, 1]. Thus, B can be
covered by

⌊
Ch ·

(
qM
(
λ+ 1

h

))t⌋ intervals of length q−Mt. With εt = q−Mt it
follows that

hs
εt

(B) ≤ Ch ·
(
qM

(
λ+

1
h

))t

· q−Mts = Ch ·
(
qM (λ+ 1

h )
qMs

)t

.

For any s > 1 + logq(λ + 1
h )/M we have qMs > qM (λ + 1

h). Thus, letting
t → ∞ (hence εt → 0), we get hs(B) = 0. By the definition of DH(B) it
follows that DH(B) ≤ s. Since s > 1 + logq(λ + 1

h )/M is arbitrary, we obtain
DH(B) ≤ 1 + logq(λ+ 1

h )/M for all h ∈ N and thus

DH(B) ≤ 1 +
logq(λ)
M

.

Thus, the upper bound is shown.
To prove the lower bound, we define for h ∈ N the number Xh as the least

multiple of (M + 1) such that at timestep Xh there are at least (qM (λ− 1
h ))Xh
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prefix strings leading to state s0. Let the exact number of such strings be Sh.
Let also

A(h) := {a ∈ A | s(n ·Xh) = s0, ∀n ∈ N}, B(h) := ι(A(h)),

be the set of multisequences which visit state s0 every Xh timesteps. Since each
prefix of length n · Xh repeats n times the process of duplication by Sh, there
are Sn

h prefixes of length n · Xh in A(h). By the mapping ι(A(h)) = B(h), we
thus obtain a subset of [0, 1] for which we can apply Lemma 2 with S := Sh and
N := qM·Xh . So we obtain

DH(B(h)) ≥
logq(Sh)

logq(qM·Xh)
≥
MXh + logq

(
(λ− 1

h )Xh
)

M ·Xh
= 1 +

logq(λ− 1
h )

M
.

The last inequality is valid for all h ∈ N and we have A ⊇ A(h) and thus
B ⊇ B(h). Hence the Hausdorff dimension of B is bounded from below by

DH(B(h)) ≥ 1 +
logq(λ− 1

h )
M

for all h ∈ N, and together with the upper bound we finally arrive at

DH(AL/J(r;M, q)) := DH(BL/J(r;M, q)) = 1 +
logq(λL/J(r;M, q))

M
.

�

7 Numerical Results

This section assembles the Hausdorff dimensions of the sets of r-L–perfect,
resp. r-J–perfect M -multisequences over Fq, for r = 1, 2, 3, 4, 5, M = 1, 2, 3, 4,
and q = 2, 3, 4, 5, 8, 16.

Unlike the case M = 1, it seems to be hopeless to find a general formula (in
r) of the characteristic polynomial (remember that DH(AL/J (r; 1, q)) = (1 +
logq(ϕ(r)))/2, where ϕ(r) is the largest real root of xr− (q−1) ·

∑r−1
k=0 x

k = 0, see
[4]). However, for fixed r = 1, varying M , we have achieved the following result:

Theorem 3. The Hausdorff dimension of the set of 1-L–perfect multisequences
over FM

q is DH(AL(1;M, q)) = 1 + logq(λL(1;M, q))/M with

λL(1;M, q) =
M+1

√√√√(q − 1)M ·
∏M−1

k=0

(∑k
i=0 q

i
)

q(
M+1

2 )
= M+1

√√√√ M∏
k=1

(
1− 1

qk

)
.

Proof. For 1-L–perfect multisequences, all involved states must have d = 0 by
(8), hence all batteries must be either zero, or −1 (from a drain 0 → −1 after
decrementing, with immediate discharge).



The Hausdorff Dimension of the Set of r-Perfect M -Multisequences 269

There are 2M such states, with bm ∈ {0,−1} and d = 0. This subset of the
BDM is isomorphic to the M -dimensional hypercube with corners labeled from
{0,−1}M (corresponding to b1, . . . , bM ), every edge being directed towards the
vertex with (one) more ‘−1’s and with attached probability (q − 1)/qa, if the
a-th zero from the beginning is replaced by −1. Furthermore, an additional edge
goes from (−1, . . . ,−1) to (0, . . . , 0), with probability 1.

It may be seen that every state with T ‘−1’s is from ST , and in fact we may
identify all states from the same ST : There is only one state from SM , and all
states from SM−1 have exactly one transition (with probability (q−1)/q) to the
single state in SM , hence the states in SM−1 can all be identified. By induction,
all states in SM−K have K transitions with probabilities (q− 1)/qk, 1 ≤ k ≤ K,
to the (now only) state in SM−K+1.

Thus we have M + 1 states, one for each T , with transition probability
(q − 1) ·

∑M−T
k=1 q−k, T = 0, . . . ,M − 1, and a transition from (−1, . . . ,−1) ∈

SM to (0, . . . , 0) ∈ S0, with probability 1. The product of these probabilities
gives the formula for λL(1;M, q), and the Hausdorff dimension now follows as
before. �

We finish with a table of Hausdorff dimensions (truncated, not rounded). Appar-
ently, with r →∞ and/or M →∞, DH → 1. However, we always have DH < 1,
and the AL/J have Haar measure 0 in

(
FM

q

)∞.

Hausdorff Dimensions

DH(AL(r;M, 2))
r M = 1 2 3 4
1 0.5000 0.7641 0.8660 0.9149
2 0.8471 0.9442 0.9646 0.9865
3 0.9395 0.9743 0.9905 0.9964
4 0.9733 0.9931 0.9974 0.9995
5 0.9876 0.9965 0.9993 0.9999

DH(AJ (r;M, 2))
r M = 1 2 3 4
1 0.5000 0.8166 0.9200 0.9622
2 0.8471 0.9591 0.9880 0.9965
3 0.9395 0.9889 0.9980 0.9996
4 0.9733 0.9968 0.9996 0.9999
5 0.9876 0.9991 0.9999 0.9999

DH(AL(r;M, 3))
r M = 1 2 3 4
1 0.8154 0.9206 0.9574 0.9739
2 0.9574 0.9891 0.9937 0.9984
3 0.9876 0.9964 0.9992 0.9999
4 0.9961 0.9995 0.9999 0.9999
5 0.9987 0.9998 0.9999 0.9999

DH(AJ (r;M, 3))
r M = 1 2 3 4
1 0.8154 0.9480 0.9830 0.9941
2 0.9574 0.9934 0.9990 0.9998
3 0.9876 0.9991 0.9999 0.9999
4 0.9961 0.9998 0.9999 0.9999
5 0.9987 0.9999 0.9999 0.9999

DH(AL(r;M, 4))
r M = 1 2 3 4
1 0.8962 0.9576 0.9778 0.9865
2 0.9806 0.9962 0.9979 0.9996
3 0.9955 0.9990 0.9998 0.9999
4 0.9989 0.9999 0.9999 0.9999
5 0.9997 0.9999 0.9999 0.9999

DH(AJ (r;M, 4))
r M = 1 2 3 4
1 0.8962 0.9760 0.9937 0.9983
2 0.9806 0.9981 0.9998 0.9999
3 0.9955 0.9998 0.9999 0.9999
4 0.9989 0.9999 0.9999 0.9999
5 0.9997 0.9999 0.9999 0.9999
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DH(AL(r;M, 5))
r M = 1 2 3 4
1 0.9306 0.9726 0.9859 0.9915
2 0.9891 0.9982 0.9991 0.9998
3 0.9979 0.9996 0.9999 0.9999
4 0.9996 0.9999 0.9999 0.9999
5 0.9999 0.9999 0.9999 0.9999

DH(AJ (r;M, 5))
r M = 1 2 3 4
1 0.9306 0.9864 0.9970 0.9993
2 0.9891 0.9992 0.9999 0.9999
3 0.9979 0.9999 0.9999 0.9999
4 0.9996 0.9999 0.9999 0.9999
5 0.9999 0.9999 0.9999 0.9999

DH(AL(r;M, 8))
r M = 1 2 3 4
1 0.9678 0.9880 0.9939 0.9963
2 0.9965 0.9996 0.9998 0.9999
3 0.9995 0.9998 0.9999 0.9999
4 0.9999 0.9999 0.9999 0.9999

DH(AJ (r;M, 8))
r M = 1 2 3 4
1 0.9678 0.9956 0.9993 0.9999
2 0.9965 0.9999 0.9999 0.9999
3 0.9995 0.9999 0.9999 0.9999
4 0.9999 0.9999 0.9999 0.9999

DH(AL(r;M, 16))
r M = 1 2 3 4
1 0.9883 0.9958 0.9979 0.9987
2 0.9993 0.9999 0.9999 0.9999
3 0.9999 0.9999 0.9999 0.9999

DH(AJ (r;M, 16))
r M = 1 2 3 4
1 0.9883 0.9991 0.9999 0.9999
2 0.9993 0.9999 0.9999 0.9999
3 0.9999 0.9999 0.9999 0.9999

8 Conclusion

We developed a model of multidimensional linear complexity, using a stochastic
infinite state machine, the Battery-Discharge-Model “BDM”, which is selfsimilar
on the time axis, folding back time mod (M + 1) onto itself.

We introduced two different notions of r-perfectness and defined the corres-
ponding finite subset of the transition matrix of the BDM. Its largest eigenvalue
λ gives the Hausdorff dimension of the set of r-perfect multisequences as DH =
1+ logq(λ)/M . We finished with explicit numerical values and a general formula
for the Hausdorff dimension of the set of 1-perfect multisequences.
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Abstract. Binary sequences generated by nonlinearly filtering maximal
length sequences with period 2n − 1 are studied in this paper. We focus
on the particular class of equidistant filters and provide improved lower
bounds on the linear complexity of the filtered sequences. This is achieved
by first considering and proving properties of generalised Vandermonde
determinants. Furthermore, it is shown that the methodology developed
can be used for studying properties of any nonlinear filter.

Keywords: Binary sequences, filter functions, linear complexity, linear
feedbak shift registers, symmetric functions, Vandermonde determinants.

1 Introduction

Binary sequences have been traditionally employed in many applications, rang-
ing from spread spectrum communication systems to stream ciphers and cryp-
tography in general. This is mainly due to the ease and efficiency of their im-
plementation, most notably via a linear feedback shift register (LFSR) [4]. The
properties such sequences are required to possess depend on the application
and among others include long period, balance of ones and zeros, low out-
of-phase autocorrelation spectra, as well as large linear complexity. The last
property, defined as the length of the shortest LFSR that generates a given
sequence, is an important measure for evaluating the cryptographic strength
of the sequence against cryptanalytic attacks, such as the Berlekamp-Massey
algorithm [13].

Sequences with large linear complexity are most commonly generated by ap-
plying appropriately chosen nonlinear filters, i.e. Boolean functions, to distinct
phases of a maximal length sequence [16]. It is well-known that the maximum
possible linear complexity attained by nonlinear filterings depends on the de-
gree of the Boolean function used [7], [8]. The problem of determining the exact
value of linear complexity attained by any filtering is still open; however, several
classes of filters have been proposed that allow to derive lower bounds on its
value. These constructions primarily study filters that consist of a single equidis-
tant or norm-phase product of phases of a maximal length sequence, and extend
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the results obtained to the sum of such products. In the former case, the dis-
tance d between any two successive phases is taken to be coprime to the period
N = 2n − 1 of the maximal length sequence [3], [9], [15], [16]. In the latter case,
phases are properly chosen from the elements of cyclotomic cosets corresponding
to a normal basis [2], [9], [10]. It is well-known that the problem of finding the
linear complexity of a filtered maximal length sequence is equivalent to deter-
mining the degree of its minimal polynomial [5], [6], or the weight of its discrete
Fourier transform (DFT) [14], [15]. When a filter function of degree k is applied,
the best lower bound on the linear complexity of filterings derived so far is equal
to
(
n
k

)
, and rely on proving that all Fourier coefficients of field elements whose

exponent has weight k do not vanish. This procedure is formally known as the
root presence test [16].

In this paper, we focus on the case of nonlinearly filtering a maximal length
sequence with period N = 2n − 1 by an equidistant filter of degree k. We ex-
tend the work in [9], [16] by deriving a simple root presence test for field el-
ements whose exponent has weight k − 1. This is achieved by formulating the
test in terms of generalised Vandermonde determinants [17], [18], and obtain
the new improved lower bound

(
n
k

)
+
(

n
k−1

)
in some cases. Moreover, we in-

vestigate simple variants of equidistant filters and prove that they also attain
the lower bound

(
n
k

)
on the linear complexity, based on the methodology devel-

oped. The paper is organised as follows. Section 2 gives the basic background
and settles the notation. Properties of the generalised Vandermonde determi-
nants are considered in Section 3, whereas the improved lower bounds and the
new class of nonlinear filters are given in Section 4. Finally, Section 5 summa-
rizes the conclusions.

2 Background

Let x = {xj}j≥0 be a maximal length sequence of period N = 2n − 1 with
elements over the finite field F2, and let μ(z) be its minimal polynomial, with
deg(μ) = n. Then, sequence x is generated by a LFSR with feedback polynomial
μ∗(z) = zn μ(1/z), the reciprocal of μ(z). Both polynomials are primitive and
the roots of μ∗(z) are the inverses of the roots of μ(z) in the extension field
F2n of F2 [11]. It is known that the linear complexity Lx of the maximal length
sequence x equals n [4], [16]. Let α ∈ F2n be a primitive element of F2n with
μ∗(α) = 0. Then, sequence x is given by

xj = trn
1 (βα−j) = βα−j +

(
βα−j

)2 + · · ·+
(
βα−j

)2n−1

(1)

for some β ∈ F∗
2n = F2n \ {0}, where trn

1 (·) is the trace function that maps
elements of F2n onto F2. This representation of sequence x is referred to as
the trace representation, and is uniquely associated with the discrete Fourier
transform of x, since every binary sequence x of period N = 2n − 1 can be
expressed as xj =

∑N−1
i=0 βiα

−ij , where βi ∈ F2n [9], [14], [15].
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Let y = {yj}j≥0 be the binary sequence that results from the nonlinear
filtering of the maximal length sequence x by function h : Fn

2 → F2, which
maps elements of vector space Fn

2 onto F2. Then, sequence y is given by yj =
h(xj−t1 , xj−t2 , . . . , xj−tn), where the phases ti belong to the residue class ring
ZN = {0, 1, . . . , N − 1} of the integers modulo N . The filter h can always
be reduced to an equivalent form yj = h̃(xj−1, xj−2, . . . , xj−n) of consecu-
tive phases by applying the linear recurrence relation satisfied by x [16]. Let
z = (z1, z2, . . . , zn) and r = (r1, r2, . . . , rn) be elements of the vector space Fn

2 .
The Boolean function h is commonly expressed in its algebraic normal form
(ANF) given by

h(z) =
∑

r ∈ Fn
2

ar z
r1
1 zr2

2 · · · zrn
n , ar ∈ F2 . (2)

In the sequel, we assume that a0 = 0. The degree of function h is defined as
deg(h) = max{wt(r) : ar = 1, r ∈ Fn

2}, where wt(r) denotes the weight of
vector r. A special form of functions to be considered in the following sections
are the elementary symmetric polynomials of degree s, defined as

σs(z) =
∑

r ∈ Fk
2 , wt(r)=s

zr1
1 zr2

2 · · · z
rk

k

where z ∈ Fk
2n [12]. Subsequently, we use the convention that σs(z) = 0 if s < 0

or s > k.
For an integer e ∈ ZN , we define its cyclotomic coset as the distinct elements

in Ce = {e, 2e, . . . , 2n−1e} modulo N . The cardinality of Ce is always a divisor
of n [11]. Hereinafter, we say that αe ∈ F2n has weight s if wt(e) = s, that is
e = 2e0 + · · ·+ 2es−1 . It is well-known that if the degree of the function h equals
k, then the linear complexity of sequence y satisfies Ly ≤

∑k
i=1

(
n
i

)
[8]. When

h is comprised of a single product of degree k, that is yj = xj−t1xj−t2 · · ·xj−tk
,

the root presence test for the elements αe ∈ F2n of weight k, first stated in [16],
is shown below

Te = det (αti 2ej−1 )k
i,j=1 (3)

and asserts that αe is a root of the minimal polynomial of sequence y if Te 
= 0.
It is well-known that (3) becomes a Vandermonde determinant in the case of
equidistant filters. The root presence test has also been formed for elements
αe ∈ F2n of weight k − 1 [9], and is given by

Te =
∑

1≤r<s≤k

det (αli 2ej−1+1
)k−1
i,j=1 (4)

where (l1, . . . , lk−1) = (t1, . . . , tr−1, tr+1, . . . , ts−1, ts+1, . . . , tk,
1
2 (tr + ts)). In [9]

it was assumed 1 ≤ t1 < · · · < tk ≤ n; however, it is easily seen that (4) still
holds in the general case where the phases ti belong to ZN .
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3 Generalised Vandermonde Determinants

In this section, we study generalised Vandermonde determinants over the finite
field F2n . Several generalisations of the Vandermonde determinant are found in
the literature (see e.g. [18] and the references therein); our interest is on the
generalisation treated in [17]. Let us consider the vector x = (x1, . . . , xk) of
nonzero elements in F2n and the increasing sequence of nonnegative integers
R = {r1, . . . , rk}. Then

V (x;R) = det (xri

j )k
i,j=1 (5)

is called generalised Vandermonde determinant. It is clear that the choice R =
{0, . . . , k − 1} leads to the ordinary Vandermonde determinant V (x) that is
nonzero if and only if the elements of x are pairwise distinct, since

V (x) = det (xi−1
j )k

i,j=1 =
∏

1≤i<j≤k

(xi + xj) . (6)

Let diag (x) be the diagonal matrix, with the elements x1, x2, . . . , xk along its
main diagonal. In order to analyse the properties of V (x;R) we need only con-
sider V (x;R′), with R′ = {0, r2 − r1, . . . , rk − r1}, since it holds

V (x;R) = V (x;R′) det
(
diag (x)r1

)
= V (x;R′)

(
x1x2 · · ·xk

)r1
.

Thus, we assume without loss of generality that r1 = 0 in the rest of the section.
Let us define the set I = {0, 1, . . . , rk} \ R of distinct nonnegative integers;
obviously, it contains the discontinuities that appear among the elements of R
and we have k−1 ≤ rk ≤ |I|+k−1. When the cardinality of I is less than k, we
will find it convenient to write V⊥(x; I) instead of V (x;R). Next, the elements of
the set I are denoted by l1, l2, . . . , l|I| and it is assumed that 0 ≤ l1 < l2 < · · · <
l|I| ≤ |I|+k−1. Moreover, we use the notation xs = (x1, . . . , xs−1, xs+1, . . . , xk),
for 1 ≤ s ≤ k.

Lemma 1. With the above notation, let us assume I = {l}. Then we get the
identity V⊥(x; I) = V (x)σk−l(x).

Proof. Let us define the polynomial g(z) = V (x, z) over F2n , in terms of the
Vandermonde determinant V (x, z) of order k + 1. From (6) we have

g(z) = V (x)
k∏

i=1

(z + xi) = V (x)
k∑

i=0

σk−i(x) zi . (7)

On the other hand, by expanding V (x, z) along its k+1 column, i.e. the column
corresponding to z, we get g(z) =

∑k
i=0 V⊥(x; {i}) zi. Comparing the latter

expression with (7) proves the claim. ��

Lemma 2. With the above notation, let us assume I = {l1, l2}. Then we get
the identity V⊥(x; I) = V (x) det (σk−li+j−1(x))2i,j=1.
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Proof. Let us similarly define the polynomial g(z) = V⊥((x, z); {i}) over F2n , for
an integer 0 ≤ i ≤ k+1. From Lemma 1, and by considering (7), the polynomial
g(z) is given by

g(z) = V (x, z)σk−i+1(x, z) = V (x)
k∑

j=0

σk−j(x)σk−i+1(x, z) zj .

By using the identity σk−i+1(x, z) = σk−i+1(x) + z σk−i(x) we have that

g(z) = V (x)
k∑

j=0

σk−j(x)
(
σk−i+1(x) + z σk−i(x)

)
zj

= V (x)

(
k∑

j=0

σk−j(x)σk−i+1(x) zj +
k+1∑
j=1

σk−j+1(x)σk−i(x) zj

)

= V (x)
k+1∑
j=0

(
σk−j(x)σk−i+1(x) + σk−j+1(x)σk−i(x)

)
zj (8)

since by convention σl(x) = 0 if l < 0 or l > k. Note that the coefficient of zi in
(8) vanishes, which agrees with the definition of g(z). Expanding V⊥((x, z); {i})
along its k + 1 column we obtain

g(z) =
i−1∑
j=0

V⊥(x; {j, i}) zj +
k+1∑
j=i

V⊥(x; {i, j}) zj .

Since the coefficient of zj in (8) is symmetric with respect to the integers i, j,
comparison with the above expression yields the desired result. ��

Expressing generalised Vandermonde determinants in terms of elementary sym-
metric polynomials and the discontinuities in the powers involved is proved in
Theorem 3 for any number of elements in the set I. The proof uses only basic
properties of the elementary symmetric polynomials.

Theorem 3. With the above notation, let us assume I = {l1, l2, . . . , ls}. Then
we get the identity V⊥(x; I) = V (x) det (σk−li+j−1(x))s

i,j=1.

Proof. The proof is provided in the appendix. ��

4 Improved Lower Bounds on Equidistant Filterings

In this section we present the new lower bounds on the linear complexity of
nonlinearly filtered maximal length sequences. We focus on equidistant filters of
degree k, that is we assume the resulting sequence y is given by
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yj = xj−t xj−t−d · · · xj−t−(k−1)d , j ≥ 0 (9)

where t ≥ 0 and the distance d ∈ ZN \ {0} satisfies gcd(d,N) = 1. In the sequel,
we consider the root presence test only for the elements αe ∈ F2n of weight k−1
since we know that Ly ≥

(
n
k

)
[16]. Furthermore, we write e = 2e0 + · · ·+ 2ek−2 .

Prior to considering the root presence test, we first need to prove the following
result.

Lemma 4. With the notation of Section 3, let integer l satisfy 0 ≤ l ≤ k and
let m = max{0, 2l− k}. Then, it holds

l∑
i=m

∣∣∣∣ σk−i(x) σk−i+1(x)
σk+i−2l−1(x) σk+i−2l(x)

∣∣∣∣ = σk−l(x)2 .

Proof. Expanding the determinants at the left-hand side we obtain that

l∑
i=m

(
σk−i(x)σk+i−2l(x) + σk−i+1(x)σk+i−2l−1(x)

)
=

l∑
i=m

σk−i(x)σk+i−2l(x) +
l−1∑

i=m−1

σk−i(x)σk+i−2l(x)

= σk−l(x)2 + σk−m+1(x)σk+m−2l−1(x) .

The last summand always vanishes, since for m = 0 and m = 2l − k we get
σk+1(x) and σ−1(x) respectively, which by convention are zero. ��

Theorem 5. Let sequence y be given by (9), and consider the element αe ∈ F2n

with wt(e) = k − 1. Then, αe is a root of the minimal polynomial of sequence y
if and only if fe(αd) 
= 0, where

fe(z) =
k−2∑
i=0

(
z ge,i(z)2

)2ei

, ge,i(z) =
∏
j �=i

z + z2ej−ei+1

z + z2ej−ei
. (10)

Proof. Substituting ti = t + i d, for 0 ≤ i ≤ k − 1, in (4) and expanding the
determinants along their last row, the root presence test becomes

Te = α2et
∑

0≤i<j≤k−1

k−2∑
s=0

α(i+j)d2es
V⊥(xs; {i, j}) (11)

where the determinant V⊥(xs; {i, j}) has order k − 2, and the vector x is equal
to x = (αd2e0+1

, . . . , αd2ek−2+1
). When i+ j is even, that is i+ j = 2l for some

1 ≤ l ≤ k − 2, the rightmost sum of (11) vanishes, as this case corresponds
to 1

2 (ti + tj) = tl and hence the last row of the determinant in (4) coincides
with one of the rows above it. From Lemmas 2, 4 and the change of variables
(i, j) �→ (v, 2l + 1− v) we get
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Te = α2et
k−2∑
s=0

V (xs)
∑

0≤i<j≤k−1
i+j odd

α(i+j)d2es

∣∣∣∣ σk−2−i(xs) σk−1−i(xs)
σk−2−j(xs) σk−1−j(xs)

∣∣∣∣
= α2et

k−2∑
s=0

V (xs)
k−2∑
l=0

α(2l+1)d2es

l∑
v=m

∣∣∣∣ σk−2−v(xs) σk−1−v(xs)
σk−3+v−2l(xs) σk−2+v−2l(xs)

∣∣∣∣
= α2et

k−2∑
s=0

V (xs)αd2es

(
k−2∑
l=0

αld2es

σk−2−l(xs)

)2

where m = max{0, 2l − (k − 2)}. The expression inside the parentheses is a
polynomial on αd2es , and is equal to

∏
l �=s(α

d2es + αd2el+1
). Since from the def-

inition of the Vandermonde determinant we also have the identity V (xs) =
V (x)

∏
l �=s(α

d2es+1
+ αd2el+1

)−1, then Te becomes

Te = α2et V (x)
k−2∑
s=0

αd2es

(∏
l �=s

αd2es + αd2el+1

αd2es + αd2el

)2

= α2et V (x) fe(αd) .

Obviously, Te 
= 0 if and only if fe(αd) 
= 0. ��

Clearly, the simplification occuring in the root presence test given by (4) is
important. Note that the poles of the functions ge,i(z), 0 ≤ i ≤ k − 2, do not
include primitive elements αd ∈ F2n at which the function fe(z) is evaluated.
Some interesting properties of fe(z) are illustrated next.

Theorem 6. Let the function fe(z) be given by (10), and let us consider the
element αd ∈ F2n with gcd(d,N) = 1. The following hold for all l ≥ 0

1. fe(αd) 
= 0 if and only if fe(α−d) 
= 0,
2. fe(αd) 
= 0 if and only if fe(αd2l

) 
= 0, and
3. fe(αd) 
= 0 if and only if fe2l(αd) 
= 0.

Proof. Let us set β = αd. We will prove only the first property; the last two
properties are trivial since fe(β2l

) = (fe(β))2
l

= fe2l(β) for all l ≥ 0. Multiplying
the numerator and denominator of each fraction in ge,i(β−1) with β2ej−ei+1+1

we have

ge,i(β−1) =
∏
j �=i

β−2ej−ei β + β2ej−ei+1

β + β2ej−ei
=
(
β2ei−e

)2−ei

ge,i(β) .

Substituting the above result into the function fe(β−1) we finally get that

fe(β−1) =
k−2∑
i=0

β−2ei
((
β2ei−e

)2−ei

ge,i(β)
)2ei+1

=
k−2∑
i=0

β2ei−2e ge,i(β)2
ei+1

or equivalently fe(β−1) = β−2efe(β), which proves the claim. ��
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A direct result of Theorem 6 is that every root of fe(z) coexists with its inverse
in F2n , leading to fe(z) = f∗

e (z). This implies that we can identify degenera-
cies occuring at elements αe ∈ F2n of weight k − 1 from filterings of the form
ỹj = xjxj+d · · ·xj+(k−1)d if we already know the corresponding degeneracies of
(9). Next, fe(z) is further simplified by considering runs of 1s in the binary
representation of the integer e.

Corollary 7. Let the function fe(z) be given by (10), and let us consider the
element αe ∈ F2n with wt(e) = k − 1. Further, let w > 0 be the number of runs
of 1s in the binary representation of e, and assume that the i-th run has length
ci > 0 starting at position bi ≥ 0. Then

fe(z) =
w−1∑
i=0

(
z ge,i(z)2

)2bi

, ge,i(z) =
z + z2ci

z + z2

∏
j �=i

z + z2bj−bi+cj

z + z2bj−bi
. (12)

Proof. It is clear from (10) that when two consecutive 1s are encountered in
the binary representation of e, say at positions el = b and el+1 = b + 1 for
some 0 ≤ l ≤ k − 2, then the term ge,l+1(z) vanishes (caused by j = l). This is
readily generalised for runs of 1s of longer length c > 1, in which case all terms
ge,l+1(z), . . . , ge,l+c−1(z) are zero. Hence, if the number of runs is w, starting at
positions eli = bi, for 0 ≤ i < w, only the following terms ge,l0(z), . . . , ge,lw−1(z)
survive. From (10), ge,li(z) becomes

ge,li(z) =
k−2∏
j=0
j �=li

z + z2ej−bi+1

z + z2ej−bi
=

ci−1∏
r=1

z + z2
eli

−bi+r+1

z + z2
eli

−bi+r

w−1∏
s=0
s�=i

cs−1∏
r=0

z + z2els
−bi+r+1

z + z2els
−bi+r

=
∏ci

r=2

(
z + z2r)∏ci−1

r=1

(
z + z2r

) w−1∏
s=0
s�=i

∏cs

r=1

(
z + z2bs−bi+r)∏cs−1

r=0

(
z + z2bs−bi+r

)
assuming the s-th run has length cs. In all fractions only the first term of the
denominator and the last term of the numerator remain. ��

Remark 8. Let the number of runs w divide both n and the weight k − 1 of
the integer e. Let us set b = n/w and c = (k − 1)/w; clearly 0 < c < b. If
bi = ib and ci = c for 0 ≤ i < w, then it is easily seen that (12) becomes
fe(z) = trn

b

(
z ge(z)2

)
, where

ge(z) =
z + z2c

z + z2

n/b−1∏
j=1

z + z2jb+c

z + z2jb . (13)

Obviously, such simplified versions of fe(z) occur if the cyclotomic coset corre-
sponding to the element αe ∈ F2n belongs to the class of the so-called regular
cosets [1]. These are cyclotomic cosets whose elements belong to subfields of the
finite field F2n . Since it is well-known that in this case the equation fe(z) = 0
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has 2n−b solutions γ ∈ F2n [11], it is of great interest to find which of these are
written as γ = ge(αd). Complete determination of the roots of fe(z) has resulted
so far in the cases given below, leading to the improved lower bound

(
n
k

)
+
(

n
k−1

)
on the linear complexity of y.

Theorem 9. Let sequence y be given by (9). Then, for any distance d, with
gcd(d,N) = 1, and degree k = 2, 3, n− 1, n we have Ly ≥

(
n
k

)
+
(

n
k−1

)
.

Proof. For k = 2 it has already been proved using different approaches in [8], [9]
that sequence y attains maximum complexity Ly =

(
n
2

)
+
(
n
1

)
. In our notation,

we simply have fe(z) = ze with wt(e) = 1, which is nonzero at all points z = αd.
For k = 3 the cyclotomic cosets with elements of weight 2 are those with coset

leaders in {e = 1 + 2s : for 1 ≤ s ≤ �n/2	}. From (10) we get

fe(z) = z

(
z + z2s+1

z + z2s

)2

+ z2s

(
z2s

+ z2

z2s + z

)2

=
z3 + z2s+2+1 + z3 2s

+ z2s+4

z2
(
1 + z2s−1

)2
=
z
(
1 + z2s+1

)(
1 + z3 (2s−1)

)(
1 + z2s−1

)2
leading to d e 
≡ 0 (mod N) and 3d (e− 2) 
≡ 0 (mod N) since we need to ensure
that fe(αd) does not vanish. Due to gcd(d,N) = 1 both conditions hold for all
e and the linear complexity of y satisfies Ly ≥

(
n
3

)
+
(
n
2

)
.

For k = n − 1 we proceed as in the above case. All cyclotomic cosets with
elements of weight n−2 are exactly those with coset leaders in the set {e = 2n−1−
1−2s : for �n/2�−1 ≤ s ≤ n−2}. Alternatively, we can write e = 2s+1(2n−2−s−
1)+(2s−1) and hence we have two runs in the binary representation of e (unless
s = n − 2, in which case we have only one run of 1s). With the notation of
Corollary 7, we have b0 = 0, c0 = s, b1 = s + 1, and c1 = n − 2 − s, and (12)
gives

fe(z) = z

(
z + z2s

z + z2
· z + z2n−1

z + z2s+1

)2

+ z2s+1
(
z2s+1

+ z2n−1

z2s+1 + z2s+2 ·
z2s+1

+ z2s

z2s+1 + z

)2

=
z2 + z2s+1(

1 + z
)(
z2 + z2s+2

) +
z2s+2

+ z(
1 + z2s+1

)(
z2s+2 + z2

)
=
z2s+1+1 + z2s+1−1 + z2s+2

+ 1

z
(
1 + z

)2s+1+1(1 + z2s+1−1
)2 =

1 + z2s+1+1

z
(
1 + z

)2s+1+1(1 + z2s+1−1
) .

Note that if s = n − 2, Corollary 7 would lead to the following expression
fe(z) = z (1 + z2n−2−1)2(1 + z)−2. In either case, no primitive element αd would
lead to degeneracy for any integer s, giving Ly ≥

(
n

n−1

)
+
(

n
n−2

)
.

Finally, for k = n there is only one cyclotomic coset with elements of weight
n − 1, namely the one corresponding to e = 2n−1 − 1. Therefore, the binary
representation of e presents only one run of 1s with b0 = 0 and c0 = n − 1. In
this case, (12) implies that fe(z) = z (z+ z2n−1

)2 (z+ z2)−2 = (1 + z)−1. Hence,
fe(αd) 
= 0 for all integers d. ��
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Theorem 10. Let sequence y be given by (9). Then, for any distance d, with
gcd(d,N) = 1, and degree 4 ≤ k ≤ n− 2 we have Ly ≥

(
n
k

)
+ n.

Proof. For each equidistant filter of degree k, with 4 ≤ k ≤ n−2, let us consider
the integer e = 2k−1 − 1. Clearly, the cardinality of the cyclotomic coset of
e equals n. Corollary 7 gives fe(z) = z (1 + z2k−1−1)2(1 + z)−2, and therefore
fe(αd) 
= 0 if αd is a primitive element of F2n . ��

The above result ensures the improved lower bound
(
n
k

)
+ n for all cases not

covered by Theorem 9. The methodology presented is easily extended to include
the sum of equidistant filters, i.e. by adding shifted versions of the filter given
in (9). From Theorem 5, the root presence test becomes

Te =
(∑

t vt α
et
)2

V (x) fe(αd), vt ∈ F2 . (14)

Hence, we also need to ensure that for a particular choice of coefficients vt ∈ F2,
no element αe ∈ F2n with wt(e) = k − 1 is root of the polynomial

∑
t vtz

t.
Exhaustive search for 2 ≤ n ≤ 20 verified the results obtained and revealed that
most of the degeneracies occur when αe ∈ F2n belongs to regular cosets (see also
Remark 8).

The methodologies developed facilitate the analysis of nonlinear filter classes
more complex than the ones currently studied in the literature [9], [10], [16]. For
1 ≤ s ≤ N−k, we generalise the definition of equidistant filters to the s-th order
semi-equidistant filters of degree k as

yj = xj−t · · · xj−t−(r−1)d xj−t−(r+s)d · · · xj−t−(k+s−1)d , j ≥ 0 (15)

where t ≥ 0, 1 ≤ r ≤ k − 1, and the distance satisfies gcd(d,N) = 1. From
Theorem 3, the root presence test (3) for αe ∈ F2n of weight k becomes

Te = αet V (x) det (σk−r+j−i(x))s
i,j=1 (16)

with x = (αd2e0
, . . . , αd2ek−1 ). Clearly, in the above case the determinant

det (σk−r+j−i(x))s
i,j=1 has the structure of a Toeplitz matrix. This allows to

prove the following result about the complexity of sequence y.

Theorem 11. With the above notation, let sequence y be given by (15) where
s= 1 and r= k − 1. If {αd, αd 2, . . . , αd 2n−1} is a normal basis of F2n over F2,
then Ly≥

(
n
k

)
.

Proof. Let us consider the finite field element αe ∈ F2n with wt(e) = k. From
the hypothesis, the root presence test (16) leads to

Te = αet V (αd2e0
, . . . , αd2ek−1 )σ1(αd2e0

, . . . , αd2ek−1 ) .

Obviously, the polynomial σ1(αd2e0
, . . . , αd2ek−1 ) =

∑k−1
i=0 α

d2ei is nonzero if and
only if {αd2e0

, . . . , αd2ek−1 } are linearly independent. In order to ensure the lower
bound

(
n
k

)
is attained, this has to hold for all possible choices of integers e with

wt(e) = k, which by hypothesis is satisfied. ��
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It is clear from the proof of Theorem 11 that the lower bound Ly ≥
(
n
k

)
is also

attained by sequence y if {α−d, α−d 2, . . . , α−d 2n−1} is a normal basis of F2n

over F2 and s = r = 1. Moreover, the preconditions of Theorem 11 impose no
difficulty in choosing the distance d between the phases of x, since there always
exists a normal basis of F2n over F2 [11].

5 Conclusions

Maximal length sequences nonlinearly filtered by equidistant filters were studied
in this paper. It was shown that by using properties of generalised Vandermonde
determinants simple conditions for testing the presence of roots in the minimal
polynomial of filterings can be derived. As a result, the improved lower bound(
n
k

)
+
(

n
k−1

)
on the linear complexity of filterings was obtained and new class of

filters was introduced that in some cases attain the bound
(
n
k

)
. Obviously, the

results obtained can be considerably improved, by further exploiting Corollary
7 and Remark 8, or extended to nonlinear filters whose phases are chosen from
a normal basis.

Acknowledgements

This work was partially supported by the Greek Ministry of Education and
Religious Affairs under Pythagoras Grant.

References

1. Caballero-Gil, P.: Regular cosets and upper bounds on the linear complexity of cer-
tain sequences. In Ding, C., Helleseth, T., Niederreiter, H., ed.: Sequences and Their
Applications. Discrete Mathematics and Theoretical Computer Science. Springer-
Verlag, Berlin, Germany (1999) 242–256.
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A Proof of Theorem 3

We proceed by induction on the cardinality of the set I = {l1, l2, . . . , lm}. The
validity of the identity has been proved in Lemmas 1 and 2 for |I| = 1 and |I| = 2
respectively. Let us assume it holds for |I| = m, that is

V⊥(x; I) = V (x) det (σk−li+j−1(x))m
i,j=1 (17)

where x = (x1, x2, . . . , xk). Subsequently, we prove that it also holds for |I| =
m + 1. We define the polynomial g(z) = V⊥((x, z); I) over F2n , which from (6)
and the induction hypothesis is written as

g(z) = V (x, z) det (σk−li+j(x, z))m
i,j=1

= V (x) det (σk−li+j(x) + z σk−li+j−1(x))m
i,j=1

k∑
r=0

σk−r(x) zr (18)

as a result of the identity σk−li+j(x, z) = σk−li+j(x) + z σk−li+j−1(x). It can
be easily verified that the determinant appearing in (18) is equal to (see also
remark at the end of the proof)

det (σk−li+j(x) + z σk−li+j−1(x))m
i,j=1

=
∑

c∈ Fm
2

det (σk−li+j−cj (x))m
i,j=1 z

wt(c) (19)

where c = (c1, c2, . . . , cm). From the above expression we conclude that if vec-
tor c is such that cs = 0 and cs+1 = 1, for some 1 ≤ s < m, then we have
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det (σk−li+j−cj (x))m
i,j=1 = 0, since two of its columns are identical. Therefore,

the nonzero determinants correspond to the integers in the set Am = {us =
(us,1, us,2, . . . , us,m) : us = 2s − 1 for 0 ≤ s ≤ m}. From (19) and the above
analysis, (18) leads to

g(z) = V (x)

(
m∑

s=0

det (σk−li+j−us,j (x))m
i,j=1 z

s

)(
k∑

r=0

σk−r(x) zr

)

= V (x)
k+m∑
r=0

(
br∑

s=ar

σk−r+s(x) det (σk−li+j−us,j (x))m
i,j=1

)
zr (20)

where ar = max{0, r − k} and br = min{r,m}. Notice that when r < m then
br = r; however we may include s = r+1, . . . ,m in (20) since then k− r+ s > k
and by convention we have σk−r+s(x) = 0. Moreover, when r > k then ar = r−k;
but we can similarly include s = 0, . . . , r− k− 1 in (20) since then k− r+ s < 0
and σk−r+s(x) = 0. Therefore, if we also denote r by lm+1, and recall that
us,j = 1 for 1 ≤ j ≤ s and us,j = 0 otherwise, then (20) becomes

g(z) = V (x)
k+m∑

lm+1=0

(
m∑

s=0

σk−lm+1+s(x) det (σk−li+j−us,j (x))m
i,j=1

)
zlm+1

= V (x)
∑

lm+1 ∈{0,1,...,k+m}\I

det (σk−li+j−1(x))m+1
i,j=1 z

lm+1 (21)

where the sum inside the parentheses is identified with the expansion of the de-
terminant det (σk−li+j−1(x))m+1

i,j=1 along the row corresponding to lm+1. Clearly,
the determinant vanishes whenever lm+1 ∈ I. On the other hand, expanding
g(z) = V⊥((x, z); I) along its k + 1 column we obtain

g(z) =
∑

lm+1 ∈{0,1,...,k+m}\I

V⊥(x; I ∪ {lm+1}) zlm+1 (22)

From (21), (22) we get V⊥(x; I ∪ {lm+1}) = V (x) det (σk−li+j−1(x))m+1
i,j=1 which

concludes our proof. ��

Remark. To simplify the notation, let us write ai,j in place of σk−li+j(x), for 1 ≤
i, j ≤ m. Further, let Pm be the set of all permutations π ∈ Pm of {1, 2, . . . ,m}.
The determinant at the left-hand side of (19) becomes

det (ai,j + z ai,j−1)m
i,j=1 =

∑
π ∈Pm

m∏
j=1

(
aπj ,j + z aπj ,j−1

)
(23)

where π(1, . . . ,m) = (π1, . . . , πm). Let us define the integers cj ∈ F2, for 1 ≤ j ≤
m. The product at the right-hand side of (23) can be written as the sum of 2m

terms of the form (zc1aπ1,1−c1) · · · (zcmaπm,m−cm), where cj indicates whether
aπj ,j or z aπj,j−1 contributes for each 1 ≤ j ≤ m. As a result, we have
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det (ai,j + z ai,j−1)m
i,j=1 =

∑
π ∈Pm

∑
c∈ Fm

2

aπ1,1−c1 · · · aπm,m−cm zc1+···+cm

=
∑

c∈ Fm
2

( ∑
π ∈Pm

aπ1,1−c1 · · · aπm,m−cm

)
zwt(c)

=
∑

c∈ Fm
2

det (ai,j−cj )
m
i,j=1 z

wt(c)

where c = (c1, c2, . . . , cm), thus establishing the validity of (19). ��
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Abstract. An upper bound is established for certain exponential sums
with respect to multiplicative characters defined on the rational points
of an elliptic curve over a prime field. The bound is applied to investigate
the pseudo-randomness of a large family of binary sequences generated
from elliptic curves by using discrete logarithm. That is, we use this esti-
mate to show that the resulting sequences have the advantages of ‘small’
well-distribution measure and ‘small’ multiple correlation measure.

1 Introduction

In a series of papers Mauduit and Sárközy (partly with further coauthors) stud-
ied finite pseudo-random binary sequences

SN = {s1, s2, · · · , sN} ∈ {+1,−1}N .
They first introduced several measures to evaluate the pseudo-randomness
of such sequences in [17]. Two main measures within these measures are the
well-distribution measure and the correlation measure of order k. The well-
distribution measure of SN is defined as

W (SN ) = max
a,b,t

∣∣∣∣∣∣
t−1∑
j=0

sa+jb

∣∣∣∣∣∣ ,
where the maximum is taken over all a, b, t such that a, b, t ∈ N and 1 ≤ a ≤
a+ (t− 1)b ≤ N , while the correlation measure of order k of SN is defined as

Ck(SN ) = max
M,D

∣∣∣∣∣
M∑

n=1

sn+d1sn+d2 · · · sn+dk

∣∣∣∣∣ ,
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where the maximum is taken over all D = (d1, · · · , dk) with non-negative integers
0 ≤ d1 < · · · < dk and M such that M + dk ≤ N .

The sequence SN is considered as a “good” pseudo-random sequence, if both
these measures W (SN ) and Ck(SN ) (at least for small k) are “small” in terms
of N (in particular, both are o(N) as N →∞).

It was shown by Mauduit and Sárközy in [17] that the Legendre symbol forms
a “good” pseudo-random sequence. That is, let p be an odd prime, and

N = p− 1, sn =
(
n

p

)
, SN = {s1, s2, · · · , sN} ∈ {+1,−1}N .

This sequence is also known as the Legendre sequence. According to Theorem 1
of [17], we have

W (SN ) = O(p1/2log(p))

and
Ck(SN ) = O(kp1/2log(p)).

Indeed, it was shown in [3] that for a “random” sequence SN ∈ {+1,−1}N (i.e.,
choosing SN ∈ {+1,−1}N with probability 1/2N), both W (SN ) and Ck(SN )
(for some fixed k) are around N1/2 with “near 1” probability.

Later Goubin, Mauduit and Sárközy extended this construction in [7], they
constructed binary sequences, which we call as GMS-sequences for short, by
using a family of polynomials f(x) ∈ Fp[x] under some special conditions:

N = p− 1, sn =
(
f(n)
p

)
, SN = {s1, s2, · · · , sN} ∈ {+1,−1}N .

Gyarmati constructed a family of binary sequences by using the notion of
discrete logarithm in [8], and we refer to the sequences as G-sequences for short.
The GMS-sequences and the G-sequences also have very interesting pseudo-
random behaviour. Many other binary sequences were designed in the literature,
see for example [3,16,18] and references therein.

Goubin et al in [7] also constructed a large family of binary sequences by using
elliptic curves. Indeed, the authors of [7] only listed some numerical data and
didn’t give any theoretical estimates. We apply exponential sums (with respect
to additive characters) on elliptic curves to show that such sequences possess
“good” pseudo-random properties in a separate paper. The essential tool is the
character sums estimates of [11].

We note that recent developments point towards an interest in the elliptic
curve analogues of pseudo-random number generators, such as the elliptic curve
linear congruential generators [5,9,10,19], the elliptic curve power generators [14]
and the elliptic curve Naor-Reingold generators [22,24]. For other number gen-
erators related to elliptic curves, the reader is referred to [1,6,13,15]. In elliptic
curve cryptosystems, such number generators provide strong potential appli-
cations for generating pseudo-random numbers and session keys in encryption
phases.
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Motivated by [8], we construct a large family of binary sequences by using
the notion of index (discrete logarithm) and show that the resulting sequences
possess “good” pseudo-random properties. That is, both the well-distribution
measure and the correlation measure of order k of such sequences are “small”.

This article is organized as follows. In Section 2, the exponential sums with re-
spect to multiplicative characters on elliptic curves are estimated. The construc-
tion of a large family of binary sequences is proposed and the pseudo-random
properties are considered in Section 3. We compare the well-distribution mea-
sure and the correlation measure of order k of our sequence with some other
sequences and draw a conclusion in Section 4.

We conclude this section with some notions and basic facts of elliptic curves
over finite fields. Let p > 3 be a prime and Fp the finite field of p elements, which
we identify with the set {0, 1, · · · , p − 1}. F∗

p is the set of non-zero elements of
Fp. Let E be an elliptic curve over Fp, given by an affine Weierstrass equation of
the standard form

y2 = x3 +Ax+B

with coefficients A,B ∈ Fp and nonzero discriminant, see [4] for details. It is
known that the set E(Fp) of Fp-rational points of E forms an Abelian group
under an appropriate composition rule denoted by ⊕ and with the point at
infinity O as the neutral element. We recall that

|#E(Fp)− p− 1| ≤ 2p1/2,

where #E(Fp) is the number of Fp-rational points, including the point at infinity
O. For any rational point R, a multiple of R is taken by nR = ⊕n

i=1R.
It is known that, as a group, E(Fp) is isomorphic to ZM × ZL for unique

integers M and L with L|M and #E(Fp) = ML. Rational points P and Q in
E(Fp) are called echelonized generators (see [11]) if the order of P is M , the
order of Q is L, and any point in E(Fp) can be represented in the form mP ⊕ lQ
with 1 ≤ m ≤M and 1 ≤ l ≤ L.

Let Fp(E) be the function field of E defined over Fp. For any f ∈ Fp(E) and
R ∈ E(Fp), R is called a zero (resp. pole) of f if f(R) = 0 (resp. f(R) = ∞).
Any rational function has only a finite number of zeros and poles. The divisor
of a rational function f is written as

Div(f) =
∑

R∈E(Fp)

ordR(f)[R],

where each integer ordR(f) is the order of f at R and ordR(f) = 0 for all
but finitely many R ∈ E(Fp). Note that ordR(f) > 0 if R is a zero of f and
ordR(f) < 0 if R is a pole of f .
We also write

Supp(f0) = {R ∈ E(Fp)|f(R) = 0}

and
Supp(f∞) = {R ∈ E(Fp)|f(R) =∞}.
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Then Supp(f) = Supp(f0) ∪ Supp(f∞), which is called the support of Div(f).
In particular, #Supp(f), the cardinality of Supp(f), is 2 or 3 if f = x and
#Supp(f) ≤ 4 if f = y.

The translation map by W ∈ E(Fp) on E(Fp) is defined as

τW : E(Fp)→ E(Fp)
P �→ P ⊕W.

It is obvious that (f ◦ τW )(P ) = f(τW (P )) = f(P ⊕W ). We denote by ' the
inverse operation of ⊕ in the rational points group of E . From Lemma 3.16,
Theorem 3.17 and Lemma 3.14 of [4], we have the following statement.

Lemma 1. Let f ∈ Fp(E) be a nonconstant rational function. If R ∈ Supp(f)
and the order of f at R is ρ, then R'W belongs to the support of Div(f ◦ τW )
with the same order ρ.

2 Exponential Sums on Elliptic Curves

For any positive n, an additive character of Zn := {0, 1, · · · , n− 1}, the residue
ring modulo n, is defined as

en(z) = exp(2πiz/n).

All additive characters of Fp can be described by the set:

Φ = {φα|φα(z) = ep(αz) for α ∈ Fp}.

Let P,Q ∈ E(Fp) be the echelonized generators of order M and L, respectively.
The group Ω = Hom(E(Fp),C∗) of the characters on E(Fp) is defined as follows:

Ω = {ωab|ωab(mP ⊕ lQ) = eM (am)eL(bl) for 0 ≤ a < M and 0 ≤ b < L}.

The exponential sums

S(ω, φ, f) =
∑∗

R∈E(Fp)
ω(R)φ(f(R))

have been investigated in [11], where ω ∈ Ω, φ ∈ Φ, f ∈ Fp(E) is a rational
function and

∑∗ indicates that the poles of f are excluded from the summation.
In fact, in [11], the exponential sums have been considered for an elliptic curve E
defined over any extension field Fq. And the exponential sums S(ω00, φ, f) with
the trivial character ω00 ∈ Ω have been estimated in [2,1,12,27].

Now we introduce the multiplicative characters of F∗
p. In the sequel, let g be

a fixed primitive root modulo p. For each x ∈ F∗
p, let ind(x) denote the index

(discrete logarithm) of x (to the base g) so that

gind(x) ≡ x (mod p).

We add the condition
1 ≤ ind(x) ≤ p− 1
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to make the value of index unique. A multiplicative character of F∗
p is defined by

χa(x) := ep−1(a · ind(x)) = exp
(

2πia · ind(x)
p− 1

)
where a ∈ Zp−1. We denote by Ψ the set of all multiplicative characters of F∗

p

with the trivial character χ0:

Ψ := {χa|a ∈ Zp−1}.

Ψ forms a cyclic group under the multiplication of characters. For any χ ∈ Ψ ,
we set χ(x) = χ(x−1), i.e., χ is the inverse of χ. Since χ ∈ Ψ is defined over F∗

p,
for convenience, we extend χ to Fp only by defining χ(0) = 0. And the identity
χ(xy) = χ(x)χ(y) will remain true for any x, y ∈ Fp. We also denote by Ψ∗ the
set of all nontrivial multiplicative characters of F∗

p.
We define the exponential sums with respect to multiplicative characters as

follows:
S(ω, χ, f) =

∑∗
R∈E(Fp)

ω(R)χ(f(R)),

where ω ∈ Ω, χ ∈ Ψ , f ∈ Fp(E) is a rational function and
∑∗ indicates that

the poles of f are excluded from the summation. In particular, a special case
S(ω00, χ, f) with trivial character ω00 ∈ Ω has been estimated in [1,20,21].

Theorem 1. Let f(x, y) ∈ Fp(E) be a nonconstant rational function with f(x, y)

= zl(x, y) for all z(x, y) ∈ Fp(E) and all factors l > 1 of p− 1. For any χ ∈ Ψ∗

and any ω ∈ Ω, the following upper bound holds:

|S(ω, χ, f)| < #Supp(f)
√
p.

The proof is analogous to that of Theorem 1 of [11]. Instead of applying Artin-
Schreier extensions, we obtain the desired result from Propositions 3.1 and 4.5
of [21] by using Kummer extensions.

Corollary 1. With conditions as in Theorem 1. Then we have∣∣∣∑∗
R∈Hω(R)χ(f(R))

∣∣∣ < #Supp(f)
√
p,

where H is an arbitrary subgroup of E(Fp), and
∑∗ indicates that the poles of f

are excluded from the summation.

3 Construction of Binary Sequences

Let G ∈ E(Fp) be a point of order N , that is, N is the size of the cyclic group
generated by G. We also suppose that f(x, y) ∈ Fp(E) is a rational function
with f(x, y) 
= zl(x, y) for all z(x, y) ∈ Fp(E) and all factors l > 1 of p − 1. In
particular, we are interested in the functions f = x or f = y. If R ∈ E(Fp) is a
pole of f , we select a fixed value (for example, zero) as its output.
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Definition 1. Let G ∈ E(Fp) be a point of order N . We define the binary
sequence SN = {s1, s2, · · · , sN} by

sn :=
{

+1, if 1 ≤ ind(f(nG)) ≤ (p− 1)/2;
−1, if (p+ 1)/2 ≤ ind(f(nG)) ≤ p− 1 or p|f(nG).

From Definition 1, it is easy to see that for any n ≥ 1

1
p− 1

(p−1)/2∑
i=1

∑
χ∈Ψ

χ(f(nG))χ(gi) =
{

1, if 1 ≤ ind(f(nG)) ≤ (p− 1)/2;
0, otherwise.

And hence we have

sn =
2

p− 1

(p−1)/2∑
i=1

∑
χ∈Ψ∗

χ(f(nG))χ(gi). (1)

Before we give some estimates for the parameters of the pseudorandom se-
quence SN defined above, we present some necessary statements on character
sums. The following lemma is a special case of Lemma 3 of [8].

Lemma 2. Let g be a fixed primitive root modulo p. Ψ∗ is the set of all nontrivial
multiplicative characters (with respect to g) of F∗

p. The bound holds:

∑
χ∈Ψ∗

∣∣∣∣∣∣
(p−1)/2∑

i=1

χ(gi)

∣∣∣∣∣∣ < 2(p− 1)log(p).

Lemma 3. Let N be a positive integer, and a, b, t ∈ N with 1 ≤ a ≤ a+(t−1)b ≤
N . Then the following bound holds:

N−1∑
λ=0

∣∣∣∣∣
t−1∑
x=0

eN (λ(a+ bx))

∣∣∣∣∣ < N(1 + log(N)).

Proof. Let d = gcd(b,N), M = N/d and b1 = b/d. Since (t − 1)b ≤ N − 1, we
have d(t− 1) ≤ (t− 1)b < N , and hence t− 1 < M . We derive

N−1∑
λ=0

∣∣∣∣t−1∑
x=0

eN (λ(a+ bx))
∣∣∣∣ = N−1∑

λ=0

∣∣∣∣eN (λa)
t−1∑
x=0

eN(λbx)
∣∣∣∣

= d
M−1∑
λ=0

∣∣∣∣t−1∑
x=0

eM (λb1x)
∣∣∣∣ < dM(1 + log(M)).

Since gcd(M, b1) = 1, we complete the proof by Inequality (3.4) of [23]. �
Lemma 4. With conditions as in Theorem 1. And let G ∈ E(Fp) be a rational
point of order N and χ ∈ Ψ∗. Then for any fixed a, b, t ∈ N with 1 ≤ a ≤
a+ (t− 1)b ≤ N , the following bound holds:∣∣∣∣∣

t−1∑
x=0

χ(f((a+ bx)G))

∣∣∣∣∣ < #Supp(f)p1/2(1 + log(N)),

where #Supp(f) is the cardinality of the support of f .
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Proof.∣∣∣∣t−1∑
x=0

χ(f((a+ bx)G))
∣∣∣∣ = ∣∣∣∣ 1

N

N∑
n=1

t−1∑
x=0

χ(f(nG))
N−1∑
λ=0

eN(λ(n − (a+ bx)))
∣∣∣∣

= 1
N

∣∣∣∣N−1∑
λ=0

t−1∑
x=0

eN (−λ(a+ bx))
N∑

n=1
χ(f(nG))eN (λn))

∣∣∣∣
≤ 1

N

N−1∑
λ=0

∣∣∣∣t−1∑
x=0

eN (−λ(a+ bx))
∣∣∣∣ · ∣∣∣∣ N∑

n=1
χ(f(nG))eN (λn))

∣∣∣∣ .
Now by Corollary 1 and Lemma 3, we derive the desired result. �
Theorem 2. Let f(x, y) ∈ Fp(E) be a rational function with f(x, y) 
= zl(x, y)
for all z(x, y) ∈ Fp(E) and all factors l > 1 of p− 1. The sequence SN is defined
as in Definition 1. Then the upper bound of the well-distribution measure of SN

satisfies:
W (SN ) < 4#Supp(f)p1/2log(p)(1 + log(N)),

where #Supp(f) is the cardinality of the support of f .

Proof. According to Eq.(1), for any a, b, t ∈ N with 1 ≤ a ≤ a+ (t− 1)b ≤ N ,∣∣∣∣∣t−1∑
j=0

sa+jb

∣∣∣∣∣ = 2
p−1

∣∣∣∣∣t−1∑
j=0

(p−1)/2∑
i=1

∑
χ∈Ψ∗

χ(f((a+ jb)G))χ(gi)

∣∣∣∣∣
≤ 2

p−1

∑
χ∈Ψ∗

∣∣∣∣∣(p−1)/2∑
i=1

χ(gi)

∣∣∣∣∣ ·
∣∣∣∣∣t−1∑
j=0

χ(f((a+ jb)G))

∣∣∣∣∣ .
Now by Lemmas 2 and 4, we obtain the desired result. �
Theorem 3. Let f(x, y) ∈ Fp(E) be a rational function with f(x, y) 
= zl(x, y)
for all z(x, y) ∈ Fp(E) and all factors l > 1 of p− 1. The sequence SN is defined
as in Definition 1. Then the bound of the correlation measure of order k holds:

Ck(SN ) < k4k#Supp(f)p1/2logk(p)(1 + log(N)),

where #Supp(f) is the cardinality of the support of f .

Proof. According to Eq.(1), for integers D = (d1, · · · , dk) and M with 0 ≤ d1 <
· · · < dk ≤ N −M , we have∣∣∣∣ M∑

n=1
sn+d1sn+d2 · · · sn+dk

∣∣∣∣
= 2k

(p−1)k

∣∣∣∣∣ M∑
n=1

k∏
j=1

(
(p−1)/2∑

i=1

∑
χ∈Ψ∗

χ(f((n+ dj)G))χ(gi)

)∣∣∣∣∣
= 2k

(p−1)k

∣∣∣∣∣ ∑
χ1,···,χk∈Ψ∗

(p−1)/2∑
i1=1

χ1(gi1) · · ·
(p−1)/2∑

ik=1

χk(gik)
M∑

n=1

k∏
i=1

χi(f((n+ di)G))

∣∣∣∣∣
= 2k

(p−1)k

∣∣∣∣∣ ∑χ1∈Ψ∗

(p−1)/2∑
i1=1

χ1(gi1) · · ·
∑

χk∈Ψ∗

(p−1)/2∑
ik=1

χk(gik)
M∑

n=1

k∏
i=1

χi((f ◦ τdiG)(nG))

∣∣∣∣∣ .(∗)
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Let ψ be a generator of the cyclic group Ψ , i.e., the order of ψ is p− 1. Then
for each χi, 1 ≤ i ≤ k, there exists an integer αi ∈ [1, p− 1] such that χi = ψαi .
Now let F = (f ◦ τd1G)α1 · · · (f ◦ τdkG)αk be a rational function. From Lemma 1,
it is easy to see that #Supp(F ) ≤ k#Supp(f). By Lemmas 2 and 4, we obtain

(∗) ≤ 2k

(p−1)k

k∏
j=1

∣∣∣∣∣ ∑χj∈Ψ∗

(p−1)/2∑
ij=1

χj(gij )

∣∣∣∣∣ ·
∣∣∣∣∣ M∑
n=1

k∏
j=1

χj((f ◦ τdjG)(nG))

∣∣∣∣∣
≤ 2k

(p−1)k

k∏
j=1

∑
χj∈Ψ∗

∣∣∣∣∣(p−1)/2∑
ij=1

χj(gij )

∣∣∣∣∣ ·
∣∣∣∣∣ M∑
n=1

k∏
j=1

ψ((f ◦ τdjG)αi(nG))

∣∣∣∣∣
= 2k

(p−1)k

k∏
j=1

∑
χj∈Ψ∗

∣∣∣∣∣(p−1)/2∑
ij=1

χj(gij )

∣∣∣∣∣ ·
∣∣∣∣ M∑
n=1

ψ(F (nG))
∣∣∣∣

≤ 4k#Supp(F )p1/2logk(p)(1 + log(N))

≤ 4kk#Supp(f)p1/2logk(p)(1 + log(N)).

We complete the proof of Theorem 3. �

As mentioned in the introduction, both W (SN ) and Ck(SN ) (for some fixed k)
of a “random” sequence SN ∈ {+1,−1}N are around N1/2 with “near 1” prob-
ability. Theorems 2 and 3 indicate that the resulting binary sequence also forms
a “good” pseudo-random sequence. The period N of the sequence is bounded
by the size of E(Fp). In particular, if E(Fp) is a cyclic group, then N ∼ p. We
remark that the resulting sequences are very common enough. From Corollary
6.2 of [25], about 75% of the majority of (isomorphism classes of) elliptic curves
have a cyclic point group. By Theorem 2.1 of [25], every cyclic group of order N
satisfying p− 1− 2p1/2 ≤ N ≤ p− 1 + 2p1/2 can be realized as the point group
of an elliptic curve over Fp (p > 5). The fact is also indicated in [10]. For more
information on elliptic curves with cyclic groups, the reader is referred to [25,26].

Wealsonotethatin[1]and[6],amethodforgeneratingsequenceswasproposedby
applying linear recurrence relations on elliptic curves, which may produce rational
point sequences with long periods. But it seems that the exponential sums stated in
Section 2 can not be extended to this case in a straight way.

4 Conclusion

By using the notion of discrete logarithm, We have constructed a large family of
binary sequences from elliptic curves over finite fields. In Table 1, we compare
our sequences with some other sequences, such as the Legendre sequence [17], the
GMS-sequence [7] and the G-sequence [8] described in Section 1. We conclude
that our sequences also have strong pseudo-random properties, they may be
suitable for use in cryptography.
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Table 1. Comparison of Our Sequence with Some Other Sequences

Sequences Period Well-distribution Correlation of order k

Legendre sequence N = p − 1 O(p1/2log(p)) O(kp1/2log(p))

GMS-sequence N = p − 1 O(p1/2log(p)) O(kp1/2log(p))

G-sequence N = p − 1 O(p1/2log2(p)) O(k4kp1/2logk+1(p))

Our sequence N = O(p) O(p1/2log(p)log(N)) O(k4kp1/2logk(p)log(N))

Remark 1. The implied constant in the symbol “O” may sometimes depend on the
degree deg(f) or #Supp(f) of functions f adopted in the corresponding constructions
and is absolute otherwise.

In elliptic curve cryptography, a rational point with large (prime) order will
be chosen. It is natural to generate binary sequences by such point. We note that
generating the sequences described in this paper relies on the implementation
of group operations on elliptic curves over Fp and the computation of discrete
logarithm in F

∗
p. Although one can borrow software/hardware from elliptic curve

cryptosystems for computing the rational points efficiently, the generation is very
slow since there is no fast algorithm for computing the discrete logarithm in F∗

p,
where subexponential-time index calculus methods are known.

Obtaining improvements of Theorems 2 and 3 is a challenging problem. It
would also be interesting to study the linear complexity (profile) of the resulting
sequences, which is an important cryptographic characteristic of pseudo-random
sequences.
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25. Vlăduţ, S.G.: Cyclicity Statistics for Elliptic Curves over Finite Fields. Finite Fields
and Their Applications 5(1) (1999) 13–25
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Abstract. We prove a discrepancy bound “on average” over all initial
values aα(0) = α of congruential pseudorandom numbers obtained from
the sequences aα(n) over a finite field of prime order defined by aα(n) =
naα(n − 1) + 1, n = 1, 2, . . . , using new bounds on certain exponential
sums.

Moreover, we prove a lower bound on the linear complexity of this se-
quence showing that its structural properties are close to be best possible.

Keywords: Recurrence sequences, discrepancy, uniform distribution, lin-
ear complexity, nonlinear pseudorandom numbers, counter-dependent
generator.

1 Introduction

Let p be a prime number and let IFp denote the finite field of p elements, which
we always assume to be represented by the set {0, 1, . . . , p− 1} .

There is an extensive literature which studies pseudorandom properties of
sequences uϑ(n) over IFp satisfying a recurrence relation uϑ(n) = f (uϑ(n− 1)) ,
n = 1, 2, . . ., with the initial term uϑ(0) = ϑ ∈ IFp , and some linear or nonlinear
function f , see [7,12,13,14,15,18].

Recently, there has been a suggestion to consider more general, counter-
dependent relations of the form uϑ(n) = f (uϑ(n− 1), n), see [16]. It is shown
in [6] that, provided such a sequence is of large period, one can obtain nontrivial
bounds of exponential sums with elements of such sequences and thus derive
some conclusions about the uniformity of distribution of the corresponding con-
gruential pseudorandom numbers uϑ(n)/p , n = 0, 1, . . ., in the unit interval.

Here we consider a very special case of this general construction and show that
in this case much more can be deduced about the properties of the corresponding

G. Gong et al. (Eds.): SETA 2006, LNCS 4086, pp. 295–303, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



296 I.E. Shparlinski and A. Winterhof

sequence. Namely, here we consider the family of sequences aα(n) satisfying the
recurrence relation aα(n) = naα(n− 1) + 1, n = 1, 2, . . ., with the initial term
aα(0) = α ∈ IFp .

It is easy to see that regardless of the initial value α , we always have aα(p) =
1 = a1(0) and thus more generally, aα(n+ p) = a1(n), n = 0, 1, . . .. Therefore,
it is only interesting to study sequences aα(n) on intervals 0 ≤ n ≤ N − 1 with
an integer N ≤ p .

For such segments we obtain a nontrivial bound of exponential sums with
aα(n) “on average” over all initial values α ∈ IFp , that is, on the sums

Ws(N ;λ0, . . . , λs−1) =
1
p

p−1∑
α=0

∣∣∣∣∣∣
N−1∑
n=0

e

⎛⎝s−1∑
j=0

λjaα(n+ j)

⎞⎠∣∣∣∣∣∣ ,
where e(z) = exp(2πiz/p) and λ0, . . . , λs−1 ∈ IFp . Using standard techniques
one can then derive various results about the uniformity of distribution of the
fractions aα(n)/p , n = 0, 1, . . . , N − 1, “on average” over α ∈ IFp .

We also obtain an “individual” (that is, for every α ∈ IFp ) lower bound on
the linear complexity Lα(N) of aα(n), n = 0, 1, . . . , N−1, which is the smallest
positive integer L for which there are some c1, . . . , cL ∈ IF such that

aα(n+ L) = cL−1aα(n+ L− 1) + . . .+ c0aα(n), 0 ≤ n ≤ N − L− 1.

Finally, we remark that for α = 0 the sequence a0(n) (defined over the
integers), has various combinatorial interpretations, see [17] and has also been
studied in [11].

2 Exponential Sums

Theorem 1. If gcd(λ0, . . . , λs−1, p) = 1 then for any positive integer N ≤ p , the
following bound holds:

Ws(N ;λ0, . . . , λs−1) <
(
s1/2 + 2

)
N3/4.

Proof. Clearly, for every integer k ≥ 0 we have∣∣∣∣∣∣
N−1∑
n=0

e

⎛⎝s−1∑
j=0

λjaα(n+ j)

⎞⎠− N−1∑
n=0

e

⎛⎝s−1∑
j=0

λjaα(n+ k + j)

⎞⎠∣∣∣∣∣∣ ≤ 2k.

Hence for any integer K ≥ 1 we have∣∣∣∣∣∣
N−1∑
n=0

e

⎛⎝s−1∑
j=0

λjaα(n+ j)

⎞⎠∣∣∣∣∣∣
≤ 1
K

N−1∑
n=0

∣∣∣∣∣∣
K−1∑
k=0

e

⎛⎝s−1∑
j=0

λjaα(n+ k + j)

⎞⎠∣∣∣∣∣∣+K − 1.
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Accordingly

pWs(N ;λ0, . . . , λs−1) ≤
1
K
σ + (K − 1)p, (1)

where

σ =
p−1∑
α=0

N−1∑
n=0

∣∣∣∣∣∣
K−1∑
k=0

e

⎛⎝s−1∑
j=0

λjaα(n+ k + j)

⎞⎠∣∣∣∣∣∣ .
Applying the Cauchy-Schwarz inequality, we derive

σ2 ≤ pN

p−1∑
α=0

N−1∑
n=0

∣∣∣∣∣∣
K−1∑
k=0

e

⎛⎝s−1∑
j=0

λjaα(n+ k + j)

⎞⎠∣∣∣∣∣∣
2

. (2)

We now note that for m ≥ 0 we have

aα(n+m) = fm(n)aα(n) + gm(n), n = 0, 1, . . . , (3)

where

fm(X) =
m∏

j=1

(X + j), gm(X) =
m∑

ν=1

m∏
j=ν+1

(X + j) (4)

with the natural convention that f0(X) = 1 and g0(X) = 0. Substituting (3)
into (2) we deduce

σ2 ≤ pN

p−1∑
α=0

N−1∑
n=0

∣∣∣∣∣∣
K−1∑
k=0

e

⎛⎝s−1∑
j=0

λj (fk+j(n)aα(n) + gk+j(n))

⎞⎠∣∣∣∣∣∣
2

. (5)

We now remark that the pairs (n, aα(n)) , 0 ≤ n, α ≤ p−1, are pairwise distinct.
Indeed, if

(n, aα(n)) = (m, aβ(m))

then certainly n = m and then, if n ≥ 1, aα(n − 1) = aβ(n − 1). Thus,
proceeding the same way, after n steps, we obtain α = aα(0) = aβ(0) = β .
Therefore, comparing the cardinalities we see that

{(n, aα(n)) | 0 ≤ n ≤ N − 1, 0 ≤ α ≤ p− 1}
= {(n, a) | 0 ≤ n ≤ N − 1, 0 ≤ a ≤ p− 1}.

We now derive from (5) that

σ2 ≤ pN

p−1∑
a=0

N−1∑
n=0

∣∣∣∣∣∣
K−1∑
k=0

e

⎛⎝s−1∑
j=0

λj (fk+j(n)a+ gk+j(n))

⎞⎠∣∣∣∣∣∣
2

= pN

K−1∑
k,l=0

N−1∑
n=0

e

⎛⎝s−1∑
j=0

λj (gk+j(n)− gl+j(n))

⎞⎠
p−1∑
a=0

e

⎛⎝a s−1∑
j=0

λj (fk+j(n)− fl+j(n))

⎞⎠ .
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The inner sum is vanishing, unless

s−1∑
j=0

λj (fk+j(n)− fl+j(n)) = 0,

in which case it is equal to p .
This certainly always happens if k = l . Otherwise, noticing that deg fm = m

we see that the above equation has at most max{k, l} ≤ K + s− 2 solutions in
n , 0 ≤ n ≤ p− 1. Therefore

σ2 ≤ p2N(K(K − 1)(K + s− 2) +KN) < p2N(K2(K + s− 2) +KN).

Thus, substituting this bound in (1), we obtain

Ws(N ;λ0, . . . , λs−1) <
1
K

√
N(K2(K + s− 2) +KN) + (K − 1)

=
√
N(K + s− 2 +K−1N) + (K − 1).

We now choose K =
⌈
N1/2

⌉
, getting

Ws(N ;λ0, . . . , λs−1) <
√

2N3/2 +N(s− 1) +N1/2,

and the result follows by simple calculations. ��

Let us denote by Dα,s(N) the discrepancy of the s-tuples

an =
(
aα(n)
p

, . . . ,
aα(n+ s− 1)

p

)
, 0 ≤ n ≤ N − 1,

that is,

Dα,s(N) = sup
J⊆[0,1)s

∣∣∣∣A(J,N)
N

− λ(J)
∣∣∣∣ ,

where the supremum is extended over all subintervals J of [0, 1)s , A(J,N) is
the number of points an in J for 0 ≤ n ≤ N − 1, and λ(J) is the volume
of J , see [5,10]. Using the celebrated Erdös-Turan-Koksma inequality (see also
Theorem 1.21 of [5]), in a standard fashion we derive:

Corollary 1. For any positive integer N ≤ p and every fixed integer s ≥ 1 , the
following bound holds:

1
p

p−1∑
α=0

Dα,s(N) = O(N3/4 logs N),

where the implied constant depends only on s .
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3 Linear Complexity

Theorem 2. For any positive integer N , the following bound holds:

Lα(N) ≥ min{(N − 1)/2, p}.

Proof. We see that for l ≥ k ≥ 0 the polynomials in (4) satisfy

fl(X) =
l∏

j=l−k+1

(X + j)fl−k(X), (6)

and

gl(X) =
l∏

j=l−k+1

(X + j)gl−k(X) +
l∑

ν=l−k+1

l∏
j=ν+1

(X + j). (7)

Put L = Lα(N) and cL = 1, and let

L∑
l=0

claα(n+ l) = 0, 0 ≤ n ≤ N − L− 1,

be a shortest recurrence relation satisfied by the first N elements of aα(n).
Using (3) we derive

L∑
l=0

cl(fl(n)aα(n) + gl(n)) = 0, 0 ≤ n ≤ N − L− 1,

Similarly, from

L∑
l=0

claα(n+ l + 1) = 0, 0 ≤ n ≤ N − L− 2,

and (3) we also have

L∑
l=0

cl(fl(n+ 1)aα(n) + gl(n+ 1)) = 0, 0 ≤ n ≤ N − L− 2.

Hence, we see that for 0 ≤ n ≤ N − L− 2,

0 =

(
L∑

l=0

clfl+1(n)

)(
L∑

k=0

ck(fk(n)aα(n) + gk(n))

)

−
(

L∑
l=0

clfl(n)

)(
L∑

k=0

ck(fk+1(n)aα(n) + gk+1(n))

)

=

(
L∑

l=0

clfl+1(n)

)(
L∑

k=0

ckgk(n)

)
−
(

L∑
l=0

clfl(n)

)(
L∑

k=0

ckgk+1(n)

)



300 I.E. Shparlinski and A. Winterhof

=
2L∑
l=0

min{l,L}∑
m=max{0,l−L}

cl−mcm(fl−m+1(n)gm(n)− fl−m(n)gm+1(n))

=
2L∑
l=0

min{l,L}∑
m=max{0,l−L}

cl−mcmfl−m(n)((l − 2m)gm(n)− 1) ,

where we have used (6) and (7) in the last step. Then the polynomial

F (X) =
2L∑
l=0

min{l,L}∑
m=max{0,l−L}

cl−mcmfl−m(X) ((l − 2m)gm(X)− 1)

has at least min{N − L− 1, p} distinct zeros.
We have to show that F (X) is not identically zero.
For 0 ≤ l ≤ L − 1 each term cl−mcmfl−m(X) ((l − 2m)gm(X)− 1) is of

degree at most L− 2.
We now examine the terms corresponding to l in the range L ≤ l ≤ 2L .
If l is even then the term corresponding to m = l/2 is −c2mfm(X) and thus

either identically zero if cl/2 = 0 and of degree l/2 otherwise. In particular for
l = 2L we get the term

−c2LfL(X) = −fL(X)

of degree L since cL = 1.
For L ≤ l ≤ 2L− 1 and μ = l−L, . . . , �l/2�− 1 we add the terms for m = μ

and m = l − μ , getting

cl−μcμ (fl−μ(X) ((l − 2μ)gμ(X)− 1) + fμ(X) ((2μ− l)gl−μ(X)− 1))
= cl−μcμ(l − 2μ) (fl−μ(X)gμ(X)− fμ(X)gl−μ(X))

−cl−μcμ (fl−μ(X) + fμ(X)) .

Using (6) and (7), we also derive

fl−μ(X)gμ(X)− fμ(X)gl−μ(X)
= f(l−2μ)+μ(X)gμ(X)− fμ(X)g(l−2μ)+μ(X)

=
l−μ∏

j=μ+1

(X + j)fμ(X)gμ(X)

−fμ(X)

⎛⎝ l−μ∏
j=μ+1

(X + j)gμ(X) +
l−μ∑

ν=μ+1

l−μ∏
j=ν+1

(X + j)

⎞⎠
= fμ(X)

l−μ∑
ν=μ+1

l−μ∏
j=ν+1

(X + j).

Thus for any μ = l − L, . . . , �l/2� − 1, the above polynomial is of degree
l − μ − 1 ≤ L − 1. We also see that the term −fl−μ(X) − fμ(X) is of degree
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l − μ and thus is of degree at most L− 1 except when μ = l − L when it is of
degree L . Thus

F (X) = −XL
2L∑

l=L

cl−L +G(X),

where degG(X) ≤ L− 1.
Therefore if

L∑
l=0

cl 
= 0 (8)

then we get
L = degF ≥ min{N − L− 1, p}.

Finally, assume that (8) fails and also that L ≤ (N − 1)/2. Assuming that
L ≤ (N − 1)/2 we note that the shortest recurrence relation

L∑
l=0

claα(n+ l) = 0, 0 ≤ n ≤ N − L− 1,

for the first N terms of aα(n) is unique (if as before cL = 1) and coincides
with the unique recurrence relation for the first N − 1 terms (for example,
see [4, Proposition 2 and Lemma 3]). On the other hand, if (8) fails then for
0 ≤ n ≤ N − L− 2, we have

0 =
L∑

l=0

claα(n+ l + 1) =
L∑

l=0

cl ((n+ l + 1)aα(n+ l) + 1)

= (n+ 1)
L∑

l=0

claα(n+ l) +
L∑

l=0

lclaα(n+ l) +
L∑

l=0

cl =
L∑

l=0

lclaα(n+ l).

We may assume L < p . Hence, the uniqueness property implies that cll/L = cl
for l = 0, . . . , L . Therefore, we immediately derive that cl = 0 for l = 0, . . . , L−
1, which implies

∑L
l=0 cl = 1 in contradiction to our assumption that (8) is not

valid. ��

Certainly the proof of Theorem 2 applies to sequences satisfying aα(n)
= naα(n − 1) + 1, n = 1, 2, . . ., over an arbitrary field IK of characteristic
p (including zero characteristic), leading to the bound

Lα(N) ≥
{

min{(N − 1)/2, p}, if p > 0,
(N − 1)/2, if p = 0.

4 Open Questions

We conclude with mentioning some possible directions for further research.
Certainly it would be interesting to get “individual” bounds for every α ∈ IFp

for exponential sums with aα(n). This seems to be very hard since even for the
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presumably easier sequence b(n) = n! , satisfying b(n) = nb(n − 1), this is not
known, see [8,9] for some recent progress in this direction.

It is easy to see that

aα(n) = naα(n− 1) + 1 =
(
aα(n− 1)− 1
aα(n− 2)

+ 1
)
aα(n− 1) + 1,

(at least when aα(n− 2) 
= 0). It is natural to ask whether this relation can be
used for breaking the “truncated” version of this generator in the same fashion
as it is done in [1,2,3] for other nonlinear congruential generators.
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Abstract. Generalized perfect binary array(GPBA) is a useful tool in
the construction of perfect binary arrays. By investigating the character
values of corresponding relative difference sets, we obtain some nonexis-
tence results of GPBAs. In particular, we show that no GPBA(2, 2, pn) of
any type z exists for n = 1 and any odd prime p, or for any n and any odd
prime p �≡ 1 (mod 8). For the case p = 2, there exists a GPBA(2, 2, 2n)
of type z = (z1, z2, z3) if and only if z = (0, 0, 0) and n = 0, 2, 4, or
z �= (0, 0, 0) with z3 = 0 and 0 ≤ n ≤ 5, with z3 = 1 and 0 ≤ n ≤ 3.

1 Introduction

Perfect binary arrays(PBAs) have many applications in the theory of differ-
ence sets and communications, but this kind of array seems to be very rare.
Thus as a generalization of perfect binary array, generalized perfect binary ar-
ray was first introduced by J.Jedwab in [3] to obtain PBAs (Note that Yang [12]
gave the equivalent definition: Quasi-perfect binary array). For example, J. Jed-
wab [4] found that PBA(s, t) and DQPBA(s, t) (DQPBA is some special case
of GPBA) can be used to construct PBA(2s, 2t) and PBA(4s, t) if t/gcd(s, t)
is odd. Moreover, Jedwab [3] gave the connection between GPBA(2, 2, t) with
t odd and “binary supplementary quadruple” which is used in the construction
of PBAs(or Hadamard difference sets [1]). In this paper, we will discuss the ex-
istence of such kind of generalized perfect binary array (GPBA(2, 2, t) with t
odd). Let’s begin with some basic definitions.

Definition 1. [3] An r−dimensional array A = (a[j1, · · · , jr]) with (0 ≤ ji < si)
(1 ≤ i ≤ r) is called an s1 × · · · × sr binary array if a[j1, · · · , jr] = ±1.

Definition 2. [3] Let A = (a[j1, · · · , jr]) be an s1 × · · · × sr binary array, the
periodic autocorrelation function of A is for all ui (1 ≤ i ≤ r),
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RA(u1, · · · , ur) =
s1−1∑
j1=0

· · ·
sr−1∑
jr=0

a[j1, · · · , jr]a[j1 + u1, · · · , jr + ur].

Definition 3. [3] A sequence z = (z1, · · · , zr) with zi = 0 or 1 for all 1 ≤ i ≤ r
is called a type vector.

Definition 4. [3] Let A = (a[j1, · · · , jr]) be an s1 × · · · × sr binary array and
z = (z1, · · · , zr) be a type vector. The expansion of A with respect to z is the
(z1 + 1)s1 × · · · × (zr + 1)sr binary array ε(A; z) = (a′[j1, · · · , jr]) given by

a′[j1 + y1s1, · · · , jr + yrsr] = (−1)
∑

i yia[j1, · · · , jr], 0 ≤ ji < si, 0 ≤ yi ≤ zi.

Definition 5. [3] Let A be an s1 × · · · × sr binary array and z = (z1, · · · , zr)
a type vector. A is a generalized perfect binary array of type z, abbreviated as a
GPBA(m; s1, · · · , sr) type z, if

Rε(A;z)(u1, · · · , ur) 
= 0, 0 ≤ ui < (zi + 1)si only if ui ≡ 0 (mod si) ∀i.

Remark 1. We call a GPBA(s1, · · · , sr) of type z non-splitting if there exists a
zi = 1 with 2|si, otherwise call it splitting. Note that our definition of ”splitting”
for GPBA is similar to the definition of splitting for RDS [9].

The concept of generalized perfect binary array has been introduced for many
years. However, the existence problem of GPBAs is little studied, in particular,
the existence of GPBA(2, 2, pn) is not known. In [2], it was demonstrated that
there exists no GPBA(2, 2, t), where t ≡ 3 (mod 4), and t = 5, 9. In this note,
we will show that GPBA(2, 2, pn) doesn’t exist for n = 1 and any odd prime p,
or for any n and any odd prime p 
≡ 1 (mod 8) . Additionally, in the case p = 2,
there exists a GPBA(2, 2, 2n) of type z = (z1, z2, z3) if and only if z = (0, 0, 0)
and n = 0, 2, 4, or z 
= (0, 0, 0), z3 = 0 and 0 ≤ n ≤ 5, or z3 = 1 and 0 ≤ n ≤ 3.

2 Some Preliminaries

One of the tools in order to investigate the existence of GPBAs comes from
difference set theory. We introduce some basic facts about relative difference
sets in this section. Interested readers are referred to [1] for a detailed survey
about the nonexistence theory of difference sets.

Let R be a k-element subset of a finite multiplicative group G of order mn
containing a normal subgroup N of order n, R is called an (m,n, k, λ)-relative
difference set(RDS) in G relative to N provided that the multiset r1r−1

2 (r1 
=
r2 ∈ R) replicates each element of G \ N exactly λ times and replicates no
element of N . If G ∼= G/N ⊕N , then R is called splitting. If k = nλ, then R is
called semi-regular.

Difference sets are usually studied in the context of the group ring Z[G]. In
general, a subset D of a finite group G can be regarded as an element

∑
g∈D g

in Z[G]. ∀χ ∈ G∗, where G∗ denotes the character group of G, let χ(D) =
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g∈D χ(g), D(−1) =

∑
g∈D g−1. Throughout this paper, χ0 denotes the principal

character of G, ξq is the primitive q-th root of unity, and all groups will be
implicitly assumed to be abelian and finite.

We mention two standard lemmas about RDSs. For more about RDSs see [9].

Lemma 1. A k-element subset R of G is an (m,n, k, λ)-RDS in G relative to
N , if and only if for every nonprincipal character χ of G ,

|χ(R)| =
{√

k − λn if χ is principal on N√
k if χ is nonprincipal on N

.

Lemma 2. Let R be an (m,n, k, λ)-RDS in G relative to N and let ρ : G →
G/U denote the canonical epimorphism, where U is a subgroup of G, then the
image ρ(R) satisfies

ρ(R) · ρ(R(−1)) = k + |U | · λ ·G/U − |U ∩N | · λ ·N/U.

If U is a subgroup of N , then ρ(R) is an (m,n/u, k, λ ·μ)−RDS in G/U relative
to N/U .

The following theorem establishes the equivalence between GPBAs and appro-
priate RDSs.

Theorem 1. [3] Let z = (z1, · · · , zr) 
= (0, · · · , 0) be a type vector and EA =
s1 × · · · × sr. Let A be an s1 × · · · × sr binary array and let A′ = ε(A; z).
Define the following groups G,H and K, where H is a subgroup of G and K is
a subgroup of H:

G = Z(z1+1)s1 × · · · × Z(zr+1)sr

H = {(h1, · · · , hr) : hi = yisi and 0 ≤ yi ≤ zi}
K = {(k1, · · · , kr) : ki = yisi, 0 ≤ yi ≤ zi and

∑
i yi is even}

Let D be the subset of the factor group G/K given by

D = {K + (j1, · · · , jr) : A′(j1, · · · , jr) = −1}.

Then A is a non-trivial GPBA(s1, · · · , sr) of type z if and only if D is an
(EA, 2, EA, EA/2)-RDS in G/K relative to H/K.

Remark 2. In the case z = (0, · · · , 0), a GPBA(s1, · · · , sr) of type z is in fact a
PBA(s1, · · · , sr).

In the end of this section, we introduce Turyn’s self-conjugacy assumption and
Ma’s lemma, which are important in the theory of difference sets.

Definition 6. Let p be a prime and m be a positive integer, where m = pam′

with (m′, p) = 1. p is called self-conjugate modulo m if there exists a positive
integer i with pi ≡ −1 (mod m′).
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Lemma 3. [11] Let p be a prime which is self-conjugate modulo m. If X ∈ Z[ξm]
satisfies X ·X ≡ 0 (mod p2a), then we have

X ≡ 0 (mod pa).

Lemma 4. [6] Let A be an element in Z[G] where G is an abelian group with a
cyclic Sylow p-group P . Let P1 denote the unique subgroup of order p. If χ(A) ≡ 0
(mod pa) for all nonprincipal characters of G, then

A = P1 ·X + pa · Y

for suitable X and Y in Z[G], where the coefficients of X and Y can be chosen
to be nonnegative if the coefficients of A are nonnegative.

3 The Result

In this section we will discuss the nonexistence of GPBA(2, 2, pn). To this end,
we give several lemmas.

Lemma 5. Let G be a finite abelian group, N be a subgroup of order 2 contained
in a cyclic subgroup of order 4 in G, and Gp be the Sylow p−subgroup of G(p
is odd). Suppose G/N ∼= Zs1 × · · · × Zsr , and p is self-conjugate modulo expG.
If there exists a non-splitting GPBA(s1, · · · , sr) of type z 
= 0, then |Gp| = p2b

and expGp ≤ pb.

Proof. If there exists a non-splitting GPBA(s1, · · · , sr) of type z 
= 0, then G
contains a non-splitting (2n, 2, 2n, n)-RDS R, where 2n = s1× · · ·× sr. Let χ be
a nonprincipal character of G, then χ(R) · χ(R) = 2n or 0. Assume pc‖2n, we
have χ(R) · χ(R) ≡ 0 (mod pc).

Let ρ be the canonical projection epimorphism G → G/Gp, and R1 = ρ(R),
then

ψ(R1) · ψ(R1) ≡ 0 (mod pc). (1)

Since p is self-conjugate modulo expG, P = P for every prime ideal factor P
over p in Z[ξexpρ(G)], therefore P 2|p. By (1), c must be even, say c = 2b, b ≥ 1.
Thus we get |Gp| = p2b.

Let the maximal cyclic subgroup of Gp be G′
p
∼= Z ′

pd . Let ρ′ be the canonical
projection epimorphism G→ G/(Gp/G

′
p), and R2 = ρ′(R), N2 = ρ′(N).

Suppose that expGp = pd > pb, we can similarly get

∀ψ ∈ ρ′(G)∗, ψ(R2) ≡ 0 (mod pb). (2)

By R ·R(−1) = 2n+ n(G−N), we have

R2 ·R(−1)
2 = 2n+ n(p2b−dρ′(G) −N2). (3)

By (2) and Lemma 4, R2 = pbX+PY , where ρ′(G) is the unique subgroup of
P of order p, X,Y ∈ Z[ρ(G)], and the coefficients of X,Y are all nonnegative.
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If X = 0, then R2 = PY , so R2 · R(−1)
2 = p · P · Y · Y (−1) which contradicts

to (3).
So |X | > 0, hence some coefficients of R2 are greater than pb. On the other

hand, coefficients of R2 = ρ′(R) are all smaller than |Gp/G
′
p| = p2b−d, so we get

pb ≤ p2b−d, which is impossible.

Remark 3. From the above result, there doesn’t exist non-splittingGPBA(2, 2, t)
(t ≡ 3 (mod 4)) of any type (see [2]). Especially, if p is an odd prime and p ≡ 3
(mod 4), there doesn’t exist non-splitting GPBA(2, 2, pn) of any type.

Lemma 6. Let R be an (m,n,m,m/n)-RDS in G relative to N , and ρ denote
the canonical projection epimorphism G → G/U , where U is a subgroup of G.
Suppose ρ(R) =

∑
g∈ρ(G)

rg · g and U ∩N = 1, then ∀x ∈ ρ(G),
∑

g∈xρ(N)

rg = |U | .

Proof. Assume C = {gN : g ∈ R} ∈ Z[G/N ]. ∀χ ∈ G∗ \ {χ0}, and χ is principal
on N , we have χ(R) = 0 by the definition of RDS. So for every nonprincipal
character ψ of G/N , ψ(R) = 0. By the Fourier inversion formula, C = c ·G/N .

Since |C| = |R| = |G/N |, we get c = 1, hence C = G/N . Thus there exists
exactly one element of R in every coset of N .

If U ∩N = 1, every coset of U ·N contains exactly |U | cosets of N , i.e.,

∀x ∈ ρ(G),
∑

g∈xρ(N)

rg = |U |.

Lemma 7. Let R be a non-splitting (22eh, 2, 22eh, 22e−1h)-RDS in G = G2×H
relative to a subgroup N of order 2, where G2 is the Sylow 2-subgroup, and
|G2| = 22e+1, |H | = h is odd. If expG2 = 2e+1 and 2 is self-conjugate modulo
expG, then there exists a subset R1 of order h in G0 = Z2e+1 × H, satisfying
R1 · R(−1)

1 = h + N1 · Y , where N1 is a subgroup of G0 of order 2. Moreover,
elements of R1 are distributed in different cosets of N1 .

Proof. Denote ρ the canonical projection epimorphism G → G0, and let R0 =
ρ(R), N1 = ρ(N). Because R is a (22eh, 2, 22eh, 22e−1h)-RDS, ∀ψ ∈ G∗

0 \ {ψ0},
ψ(R0) · ψ(R0) = 22eh or 0, i.e.,

ψ(R0) · ψ(R0) ≡ 0 (mod 22e). (4)

Since 2 is self-conjugate modulo expG, 2 is self-conjugate modulo expG0. By
Lemma 3, we get

∀ψ ∈ G∗
0, ψ(R0) ≡ 0 (mod 2e). (5)

Then by Lemma 4, there exist R1, X in Z[G0], where the coefficients of R1, X
are nonnegative, satisfying

R0 = 2eR1 +N1X. (6)

Obviously the coefficients of R0 are all smaller than |G/G0| = 2e, so the
coefficients of R1 are 0 or 1, and R1 ∩N1X = Ø.
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By Lemma 6, the sum of all elements of R0 in every coset of N1 is 2e, hence
every coefficient of X is 2e−1. Let X = 2e−1X1, where X1 is a subset of G0. So
R1 ∪X1 is the complete coset representation of N1.

Thus N1X = 2e−1(G0 −N1R1). Together with (6), we get

R0 = 2e−1G0 + 2e−1R1(2 −N1). (7)

Because R is a (22eh, 2, 22eh, 22e−1h)-RDS, it can be easily deduced that

R0R
(−1)
0 = 22eh+ 22e−1h(2eG0 −N1). (8)

Furthermore,
R1R

(−1)
1 (2−N1) = h · (2−N1). (9)

Therefore
R1R

(−1)
1 = h+N1 · Y, Y ∈ Z[G0]. (10)

Assume |R1| = r1, then |X1| = 2eh − r1. Noting that there are no units in
R1(N1X)(−1) and R

(−1)
1 N1X and calculating the number of units of equation

(8), we have

(2e)2r1 + (2(e−1))2 · 2 · (2eh− r1) = 22eh+ 22e−1h(2e − 1). (11)

Hence
r1 = h.

Let p = e0f + 1 be an odd prime, Γ be the set of all primitive e0−th roots of
unity, g be a fixed primitive root modulo p. G(p, e0) = {

∑p−2
i=0 γ

iξgi

p |γ ∈ Γ} is
the set of all Gauss sums, and G(2, 2) = {1 + ξ4}.

Lemma 8. [10] Let m = pam′, where p is a prime, (p,m′) = 1 and m 
= 2
(mod 4). If x ∈ Z[ξm] is a solution of x · x = pb, b ≥ 1, then there is an integer
j such that

xξj
m ∈ Z[ξm′ ] or x = ξj

myx0,

where x0 ∈ Z[ξm′ ], x0 · x0 = pb−1 and y ∈ G(p, e0) for some divisor e0 
= 1 of
w0 with w0 = 2 if p = 2, w0 = (p− 1,m′) if m′ is even and w0 = (p− 1, 2m′) if
both p and m′ are odd .

Now we are ready to give the main result.

Theorem 2. For any n and any odd prime p ≡ 5 (mod 8), there is no
GPBA(2, 2, pn) of any type z.

Proof. Let z = (z1, z2, z3), we consider two cases.
1) If z1 = 0 and z2 = 0, GPBA(2, 2, pn) of type z is splitting, so its ex-

istence yields the existence of PBA(2, 2, pn). However, it is well known that
PBA(2, 2, pn) doesn’t exist (see [1]).
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2) If z1 = 1 or z2 = 1, GPBA(2, 2, pn) of type z is equivalent to the existence
of a non-splitting (4pn, 2, 4pn, 2pn)-RDS in G = Z4 × Z2 × Zpn relative to a
subgroup N of order 2.

When p ≡ 5 (mod 8), 2 is self-conjugate modulo expG. Let R be the RDS. By
Lemma 7, G0 = Z4×Zpn contains a subset R1 of order pn, satisfying R1 ·R(−1)

1 =
pn + N1 · Y , where N1 is a subgroup of G0 of order 2, and elements of R1 are
distributed in different cosets of N1.

Let χ be a character of G and χ is nonprincipal on N1. Denote x = χ(R1).
Since R1 · R(−1)

1 = pn + N1 · Y , we get x · x = pn, where x is the sum of pn

different 4pn-th roots of unity.
By Lemma 8, xξj

4pn ∈ Z[ξ4]; or x = ξj
4pnyx0 , where x0 ∈ Z[ξ4], x0 ·x0 = pn−1.

2.1) In the case xξj
4pn ∈ Z[ξ4], w.l.o.g., suppose j = 0, thus x = a+ bξ4, a, b ∈

Z. Obviously, x cannot be the sum of pn different 4pn-th roots of unity.
2.2) In the case x = ξj

4pnyx0, where x0 ∈ Z[i], x0 · x0 = pn−1, suppose
x0 = a + bξ4, so pn−1 = a2 + b2, a, b ∈ Z. Hence the solutions of x · x = pn

are in the form of x = ξj
4pny(a + bξ4), where y ∈ G(p, e0). Assume j = 0 for

convenience. Let y =
∑p−2

j=0 γ
jξpn−1gj

pn , γ = −1, ξ4.
If n = 1, x0 · x0 = 1. x0 is a 4-th root of unity by Kronecker’s theorem. So we

can assume x =
p−1∑
i=1

( i
p ) · ξi

p. Obviously x is the sum of p− 1 different 4p-th roots

of unity, and it cannot be the sum of p different 4p-th roots of unity under the
cyclotomic polynomial xp−1 + · · ·+ x+ 1.

If n ≥ 2, the coefficients of x = y(a+bξ4) are±a or±b. Because pn−1 = a2+b2,
|a| or |b| is greater than 1. So, x cannot be the sum of pn different 4pn-th roots
of unity.

When p ≡ 1 (mod 8), we need the technique of Ma [7] to prove the nonexistence
of GPBA(2, 2, p).

Lemma 9. [7] Let G =< α > × < β > be a cyclic group of order v = pt1qt2 ,
where o(α) = pt1 , o(β) = qt2 , t1, t2 ≥ 1, and p, q are distinct primes. Suppose
there exists y ∈ Z[G] such that

(i) χ(y)χ(y) = pea for a character χ of G such that χ(α) = ξpt1 and χ(β) =
ξqt2 , where a is an integer, and

(ii) χ1(y)χ1(y) = pqc for a character χ1 of G such that χ1(α) = 1 and
χ1(β) = ξqt2 .

Then
y = f(β)ex0+ < αpt1−1

> x1+ < βqt2−1
> x2,

where x0, x1, x2 ∈ Z[G] and f(X) ∈ Z[X ] such that f(ξqt2 )f(ξ−1
qt2 ) = p.

Theorem 3. There is no GPBA(2, 2, p) of any type z for any odd prime p ≡ 1
(mod 4).

Proof. By Theorem 1, it suffices to prove the nonexistence of non-splitting
(4p, 2, 4p, 2p)−RDS in group of exponent 4p. Suppose the multiplicative group
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G =< α > × < β > × < γ > contains such a RDS R relative to < α2 > where
o(α) = 4, o(β) = p and o(γ) = 2.

Let ρ : G −→ K =< α > × < β > denote the homomorphism. By Lemma 9
and the fact that R is a (4p, 2, 4p, 2p)-RDS, we can deduce that

ρ(R) = (a+ bα)x0+ < α > x1+ < β > x2, (12)

where p = a2 + b2 , a, b are integers, and x0, x1, x2 ∈ Z[K].
So there exists x ∈ Z[K] such that

(1− α)(1 − β)ρ(R) = (a+ bα)(1 − α)x. (13)

Since |R
⋂
< α2 > βiγj| = 1 for all i, j, it can be deduced that the coefficients

of (βj , αβj , α2βj , α3βj) in (1− α)(1 − β)ρ(R) are (1, 1,−1,−1), (2, 2,−2,−2),
(2, 0,−2, 0), (0, 0, 0, 0) or their shifts. However the corresponding coefficients in
(a + bα)(1 − α)x are of the form (au + bv, av + bw, aw + bs, as + bu) where
u, v, w, s are integers satisfying u+ v+w+ s = 0, which implies that |a|, |b| ≤ 2,
contradicting the assumption that p is an odd prime, p ≡ 1 (mod 4) and p =
a2 + b2.

Combining Remark 3, Theorem 2 and Theorem 3, we have:

Theorem 4. There is no GPBA(2, 2, pn) of any type z for n = 1 and any odd
prime p, or for any n and any odd prime p 
≡ 1 (mod 8) .

In the end of this paper, we deal with the existence of GPBA(2, 2, 2n). Let’s
state a result of RDSs, which is due to Ma and Schmidt [8].

Lemma 10. [8] Let G be an abelian group of order p2c+1 and N be its subgroup
of order p, then a (p2c, p, p2c, p2c−1)-RDS exists in G relative to N if and only if
exp(G) ≤ c+ 1. For an abelian group of order 22c+2 and a subgroup N of G of
order 2, a (22c+1, 2, 22c+1, 22c)-RDS in G relative to N if and only if exp(G) ≤
2c+2 and N is contained in a cyclic subgroup of G of order 4 .

By Theorem 1 and Lemma 10, we can easily get

Theorem 5. There exists GPBA(2, 2, 2n) of type z = (z1, z2, z3) if and only if
z = (0, 0, 0) and n = 0, 2, 4, or z 
= (0, 0, 0), z3 = 0 and 0 ≤ n ≤ 5, or z3 = 1 and
0 ≤ n ≤ 3 .

Proof. When z = (0, 0, 0), a GPBA(2, 2, 2n) of type z is in fact a PBA(2, 2, 2n)
whose existence is equivalent to the existence of Hadamard difference sets with
parameters (2n+2, 2n+1 ±

√
2n, 2n ±

√
2n). It is well known that there exists a

Hadamard difference set in an abelian group G of order 22d+2 if and only if
expG ≤ 2d+2 [1,5]. So, there exists PBA(2, 2, 2n), i.e. GPBA(2, 2, 2n) of type
(0, 0, 0) if and only if n = 0, 2, 4.

For z 
= (0, 0, 0), the existence of GPBA(2, 2, 2n) of type z is equivalent to the
existence of a non-splitting (2n+2, 2, 2n+2, 2n+1)-RDS in groupG ∼= Z4×Z2n×Z2

or G ∼= Z2n+1 × Z2 × Z2 relative to a subgroup of order 2. By Lemma 10, it is
a simple matter to verify that n = 0, 1, 2, 3, 4, 5 if z3 = 0 and n = 0, 1, 2, 3 if
z3 = 1.
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Abstract. For an odd prime number p and positive integer e, let a be an
l -sequence with connection integer pe. Goresky and Klapper conjectured
that when pe /∈ {5, 9, 11, 13}, all decimations of a are cyclically distinct.
For any primitive sequence u of order n over Z/(pe), call u(mod 2) a
generalized l -sequence. In this article, we show that almost all decima-
tions of any generalized l -sequence are also cyclically distinct.
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1 Introduction

Recently, lots of research has been done on feedback-with-carry shift register
(FCSR) sequences [1], [2], [5]-[7], [9]-[12], [14]- [15] and linear recurring sequences
over integer residue ring [3], [8], [13], [16]-[20].

An FCSR is a feedback shift register together with a small amount of auxiliary
memory. The contents (0 or 1) of the tapped cells of the shift register are added
as integers to the current contents of the memory to form a sum σ. The parity
(σ(mod 2)) of σ is fed back into the first cell, and the higher order bits (�σ/2	)
are retained for the new value of the memory. The r taps q1, q2, ..., qr on the cells
of an r-stage FCSR define a connection integer q = −1 + q12 + q222 + ...+ qr2r.
The period of the FCSR sequence is at most ϕ(q), where ϕ(·) is Euler’s phi
function. For a detailed descriptions of FCSR sequences, please see [10].

An l -sequence is a periodic sequence (of period T = ϕ(q)) which is obtained
from an FCSR with connection integer q for which 2 is a primitive root. Thus
q is of the form q = pe, where p is an odd prime, and e ≥ 1. Such a sequence
a = (a(t))t≥0 has the following exponential representation [10]

a(t) = (A · 2−t(mod q))(mod 2), t ≥ 0, gcd(A, q) = 1.

The l -sequences are known to have several remarkable statistical properties sim-
ilar to m-sequences. They are 0-1 balanced, have fine run properties [9], [10], [11]
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and the arithmetic correlations between any two cyclically distinct decimations
of l -sequences are precisely zero [5].

If a = (a(t))t≥0 is a binary periodic sequence with period T , let a(d) =
(a(dt))t≥0 denote its d-fold decimation and xτa = (a(t+ τ))t≥0 denote the τ -
shifted sequence. If a, b are binary periodic sequences with the same period T ,
we say they are cyclically distinct if xτa 
= b, for every shift τ with 0 < τ < T .
In this article, whenever a d-decimation of a sequence a is referred, it’s required
that d is always relatively prime to T .

On the basis of extensive experimental evidence, Goresky and Klapper made
the following conjecture.

Conjecture 1. [5] Let a be an l -sequence with connection number pe and period
T . Suppose pe /∈ {5, 9, 11, 13}, let c and d be relatively prime to T and incongru-
ent modulo T . If c is the c-fold decimation of a and d is the d-fold decimation
of a, then c and d are cyclically distinct.

Note that the c-fold decimation c and d-fold decimation d of a can be repre-
sented as c(t) = (A · 2−ct(mod pe))(mod 2) and d(t) = (A · 2−dt(mod pe))(mod
2) respectively, where 2−c(mod pe) and 2−d(mod pe) are both primitive roots
modulo pe. More generally, let ξ be a primitive root modulo pe, and set u(t) =
A · ξt(mod pe). Then the sequence u = (u(t))t≥0 is a primitive sequence of or-
der 1 over Z/(pe) generated by x − ξ, and u(mod 2) is an l -sequence or its
decimation. For the definition of primitive sequences, please see Section 2.

Similarly, let u be a primitive sequence over Z/(pe) of order n, and call the
modulo 2 derivative sequence u(mod 2) a generalized l-sequence. As a natural
generalization of l -sequences, such sequences may also share many fine pseudo-
random properties similar to l -sequences.

For any monic polynomial f(x) over Z/(pe), denote G(f(x), pe) for the set
of all sequences over Z/(pe) generated by f(x) and set G′(f(x), pe) = {u ∈
G(f(x), pe) | u 
≡ 0(mod p)}. Detailed description of these two notations, see
also Section 2. Note that if u ∈ G(f(x), pe), then xku ∈ G(f(x), pe). Thus
Conjecture 1 can be restated as follows.

Conjecture 2. Let pe /∈ {5, 9, 11, 13} with p an odd prime and e ≥ 1 such that
2 is a primitive root modulo pe. Suppose ξ, ζ are two different primitive roots
modulo pe, and set f(x) = x−ξ, g(x) = x−ζ. Then for any u ∈ G′(f(x), pe), v ∈
G′(g(x), pe), we have

u 
≡ v(mod 2).

When e = 1, it’s shown in [7] that almost all decimations of l -sequences are
cyclically distinct, and when e ≥ 2, pe 
= 9, it’s shown in [15] that all decimations
of l -sequences are cyclically distinct. In this article, we further show that almost
all decimations of any generalized l -sequence are also cyclically distinct.

Let f(x), g(x) be two different primitive polynomials of degree n over Z/(pe)
satisfying f(x) 
≡ g(x)(mod p), and suppose u ∈ G′(f(x), pe), v ∈ G′(g(x), pe).
We show that when e ≥ 2, u 
≡ v(mod 2) holds for all primes p, and when
e = 1, u 
≡ v(mod 2) holds for almost all primes p.
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The rest of this article is organized as follows. Firstly, an introduction to prim-
itive sequences over integer residue ring and some of their important properties
are given in Section 2. Next, the main result on the distinctness of decimations
of generalized l -sequences is shown in Section 3.

Throughout the article, for any positive integers a and n, the sign “a(mod
n)”refers to the minimal nonnegative residue of a modulo n, that is, reducing
the number a modulo n to obtain a number between 0 and n− 1. The notation
“x ≡ a(mod n)”is the usual congruent equation, and the notation “x = a(mod
n)”means x is equal to the minimal nonnegative residue of a(mod n).

2 Preliminaries

For any odd prime number p and positive integer e, let Z/(pe) = {0, 1, . . . , pe−1}
be the integer residue ring modulo pe, and (Z/(pe))∗ its multiplicative group.
Particularly, Z/(p) = GF(p) is the Galois field with p elements.

Let f(x) = xn + cn−1x
n−1 + · · ·+ c0 be a monic polynomial of degree n ≥ 1

over Z/(pe). If f(0) 
≡ 0(mod p), then there exists a positive integer P such
that f(x) divides xP − 1 over Z/(pe). The least such P is called the period
of f(x) over Z/(pe) and denoted by per(f(x), pe), which is upper bounded by
pe−1(pn − 1) [13]. Moreover, if per(f(x), pe) = pe−1(pn − 1), then say f(x) is a
primitive polynomial of degree n over Z/(pe). In this case, f(x)(mod pi) is also
a primitive polynomial over Z/(pi), whose period is per(f(x), pi) = pi−1(pn−1),
i = 1, 2, . . . , e − 1. Especially, f(x)(mod p) is a primitive polynomial over the
prime field GF(p).

The sequence u = (u(t))t≥0 over Z/(pe) satisfying the recursion

u(t+ n) = −[c0u(t) + c1u(t+ 1) + · · ·+ cn−1u(t+ n− 1)](mod pe), t ≥ 0,

is called a linear recurring sequence of order n over Z/(pe), generated by f(x).
Such a sequence is called a primitive sequence if f(x) is a primitive polynomial
and u 
≡ 0(mod p). Particularly, the primitive sequences over Z/(p) are called
m-sequences.

Denote G(f(x), pe) for the set of all sequences over Z/(pe) generated by f(x),
and G′(f(x), pe) = {u ∈ G(f(x), pe) | u 
≡ 0(mod p)} for the set of all primitive
sequences over Z/(pe) generated by f(x).

Any element v in Z/(pe) has a unique p-adic decomposition as v = v0 + v1 ·
p+ · · ·+ ve−1 · pe−1, where vi ∈ Z/(p). Similarly, a sequence u over Z/(pe) has
a unique p-adic decomposition as

u = u0 + u1 · p+ · · ·+ ue−1 · pe−1,

where ui is a sequence over Z/(p). The sequence ui is called the i-th level sequence
of u, and ue−1 the highest-level sequence of u. They can be naturally considered
as sequences over the prime field GF(p). Particularly, u0 is an m-sequence over
Z/(p) generated by f(x)(mod p) with period per(u0) = pn − 1.

The following are two important results on primitive polynomials and primi-
tive sequences over Z/(pe).
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Proposition 1. [8] Let f(x) be a primitive polynomial of degree n over Z/(pe)
with p an odd prime and e ≥ 1. Then there exists a unique nonzero polynomial
hf (x) over Z/(p) with deg(hf (x)) < n, such that

xpi−1T0 ≡ 1 + pi · hf (x)(mod f(x), pi+1), i = 1, 2, . . . , e− 1, (1)

where T0 = pn−1, the notation “( mod f(x), pi+1)” means this congruence equa-
tion holds modulo f(x) and pi+1 simultaneously. In other words, we can say
xpi−1T0 ≡ 1+pi ·hf (x)(mod f(x)) holds over Z/(pi+1) for all i = 1, 2, . . . , e−1.

Proposition 2 ([16]). Let f(x) be a primitive polynomial of degree n over Z/(pe)
with p an odd prime and e ≥ 2. Let u ∈ G′(f(x), pe), and denote α = hf (x)u0( mod
p), where hf (x) is defined as in equation (1). Then

ue−1(t+ j · pe−2T0) ≡ ue−1(t) + j · α(t)(mod p), t ≥ 0, (2)

holds for all j = 0, 1, . . . , p− 1, where T0 = pn − 1. Furthermore, if α(t) 
= 0 for
some t ≥ 0, then

{ue−1(t+ j · pe−2T0)|j = 0, 1, ..., p− 1} = {0, 1, ..., p− 1}. (3)

Else if α(t) 
= 0 for some t ≥ 0, then

ue−1(t+ j · pe−2T0) = ue−1(t) for all j = 0, 1, ..., p− 1. (4)

Remark 1. Since u0 is an m-sequence over Z/(p) generated by f(x)(mod p),
and deg(hf (x)) < deg(f(x)), then α is also an m-sequence over Z/(p) generated
by f(x)(mod p).

3 Distinctness of Decimations

Before giving the main results, we first show some necessary lemmas. As ref-
erence [20] has not yet been published, their proofs are given in Appendix for
completeness.

Lemma 1. [20] Let f(x) be a primitive polynomial over Z/(p) with p an odd
prime. Then for any u, v ∈ G′(f(x), p), u = v if and only if u ≡ v(mod 2).

Remark 2. In other words, if u and v are two different primitive sequences gen-
erated by the same polynomial, then u 
≡ v(mod 2).

Lemma 2. [20] Let p be an odd prime, λ, α, β ∈ (Z/(p))∗ with α ≡ λβ( mod p),
and δ ∈ Z/(p) with δ ≡ 0(mod 2). If 1 ≤ λ ≤ p− 2, then there exists a positive
integer j, 1 ≤ j ≤ p− 1, such that

(jα(mod p))(mod 2) 
= ((jβ + δ)(mod p))(mod 2).

The first main result is as follows.
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Theorem 1. Let p be an odd prime and e ≥ 2. Suppose f(x) and g(x) are
two different primitive polynomials of degree n over Z/(pe) satisfying f(x) 
≡
g(x)(mod p). Then for any u ∈ G′(f(x), pe), v ∈ G′(g(x), pe), we have

u 
≡ v(mod 2).

Proof. Set T0 = pn − 1. Let α = hf(x)u0(mod p) and β = hg(x)v0(mod p),
where hf (x) and hg(x) are defined as (1). Since α, β are m-sequences of or-
der n over Z/(p) generated by f(x)(mod p) and g(x)(mod p) respectively, and
f(x) 
≡ g(x)(mod p), then α, β are linearly independent over Z/(p). Thus α 
≡
(p − 1)β(mod p). That is, there exists an integer t0, t0 ≥ 0, such that α(t0) 
≡
(p − 1)β(t0)(mod p). It’s obvious that α(t0) and β(t0) can not be equal to 0
simultaneously.

Case 1. If exactly one of α(t0) and β(t0) is equal to 0, without loss of generality,
let α(t0) 
= 0 and β(t0) = 0. Then by Proposition 2 and (3), (4), we have

{ue−1(t0 + j · pe−2T0)|j = 0, 1, ..., p− 1} = {0, 1, ..., p− 1},

and
ve−1(t0 + j · pe−2T0) = ve−1(t0) for all j = 0, 1, ..., p− 1.

Thus there exist integers j1, j2, 0 ≤ j1, j2 ≤ p− 1, such that

ue−1(t0 + j1 · pe−2T0) ≡ ve−1(t0 + j1 · pe−2T0)(mod 2),

and
ue−1(t0 + j2 · pe−2T0) 
≡ ve−1(t0 + j2 · pe−2T0)(mod 2).

On the other hand, for e ≥ 2 we have

u = u(mod pe−1) + ue−1 · pe−1, where per(u(mod pe−1)) = pe−2(p− 1),

and

v = v(mod pe−1) + ve−1 · pe−1, where per(v(mod pe−1)) = pe−2(p− 1).

Thus the two congruence equations u(t0+j1·pe−2T0) ≡ v(t0+j1·pe−2T0)( mod 2)
and u(t0 + j2 ·pe−2T0) ≡ v(t0 + j2 ·pe−2T0)(mod 2) can not hold simultaneously.
That is, there exists an integer t, t ≥ 0, such that

u(t) 
≡ v(t)(mod 2).

So we get
u 
≡ v(mod 2).

Case 2. If α(t0) 
= 0 and β(t0) 
= 0, then by Proposition 2 and (2) we know
that

ue−1(t0 + j · pe−2T0) ≡ ue−1(t0) + j · α(t0)(mod p),

and
ve−1(t0 + j · pe−2T0) ≡ ve−1(t0) + j · β(t0)(mod p),

hold for all j = 0, 1, . . . , p− 1.
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On the other hand, by Proposition 2 and (3), we have

{ue−1(t0 + j · pe−2T0)|j = 0, 1, ..., p− 1} = {0, 1, ..., p− 1},
{ve−1(t0 + j · pe−2T0)|j = 0, 1, ..., p− 1} = {0, 1, ..., p− 1}.

Without loss of generality, let ue−1(t0) = 0, and set ve−1(t0) = δ.
If δ 
≡ 0(mod 2), then ue−1(t0) 
≡ ve−1(t0)(mod 2). When j = 0, 1, ..., p − 1,

as ue−1(t0+j ·pe−2T0) and ve−1(t0+j ·pe−2T0) belong to the same set {0, 1, ..., p−
1} with odd cardinality p, thus there exists an integer j0, 1 ≤ j0 ≤ p − 1, such
that

ue−1(t0 + j0 · pe−2T0) ≡ ve−1(t0 + j0 · pe−2T0)(mod 2).

Similar as Case 1, we know that the two congruence equations u(t0) ≡ v(t0)( mod
2) and u(t0 + j0 · pe−2T0) ≡ v(t0 + j0 · pe−2T0)(mod 2) can not hold simultane-
ously. That is, there exists an integer t, such that

u(t) 
≡ v(t)(mod 2).

So we get
u 
≡ v(mod 2).

Otherwise, δ ≡ 0(mod 2), and ue−1(t0) ≡ ve−1(t0)(mod 2). Let α = α(t0)
and β = β(t0) for simplicity, then α 
= 0 and β 
= 0. Set λ = αβ−1(mod p), i.e.,
α ≡ λβ(mod p), then 1 ≤ λ ≤ p − 2. Thus from Lemma 2 we know that there
exists a positive integer j1, 1 ≤ j1 ≤ p− 1, such that

(j1α(mod p))(mod 2) 
= ((j1β + δ)(mod p))(mod 2).

That is,

ue−1(t0 + j1 · pe−2T0) 
≡ ve−1(t0 + j1 · pe−2T0)(mod 2).

Similar as above, we know that the two congruence equations u(t0) ≡ v(t0)
(mod 2) and u(t0 + j1 · pe−2T0) ≡ v(t0 + j1 · pe−2T0) (mod 2) can not hold
simultaneously. That is, there exists an integer t, t ≥ 0, such that

u(t) 
≡ v(t)(mod 2).

So we get
u 
≡ v(mod 2).

Remark 3. Note that it’s shown in [15] that when n = 1, this result also holds
if the condition that f(x) 
≡ g(x)(mod p) is omitted.

Let p > 13 be a prime such that for any sequences u ∈ G′(x − ξ, p), v ∈
G′(x − ζ, p), u 
≡ v(mod 2) holds, where ξ and ζ are two different primitive
roots modulo p. The following is the second main result of this article.

Theorem 2. Suppose f(x), g(x) are two different primitive polynomials of de-
gree n over Z/(p) with p an odd prime as above. Then for any u ∈ G′(f(x), p), v ∈
G′(g(x), p), we have

u 
≡ v(mod 2).
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Proof. If n = 1, then the result holds from the assumption on p.
If n ≥ 2, set s = (pn−1)/(p−1) > 1. Then there exists uniquely one constant

δf ∈ Z/(p), relatively to f(x) only, such that

xs ≡ δf (modf(x)). (5)

Actually, the constant δf is a primitive element in Z/(p). Since u ∈ G′(f(x), p),
that is, f(x)u = 0, thus by (5) we have (xs−δf )u = 0. So we get u(t+s) = δf ·u(t)
for all t ≥ 0. Generally, we have

u(t+ j · s) = δj
f · u(t), for all t ≥ 0 and j ≥ 0.

Similarly, there exists uniquely one constant δg ∈ Z/(p), also a primitive
element in Z/(p) and relatively to g(x) only, such that xs ≡ δg(mod g(x)).
Thus

v(t+ j · s) = δj
g · v(t), for all t ≥ 0 and j ≥ 0.

For any fixed t ≥ 0, the sequences u′ = (u(t+j ·s))j≥0 and v′ = (v(t+j ·s))j≥0

can be considered as the t-shifted sequences of the s-fold decimations of u and
v, respectively. They are m-sequences with period per(u′) = per(v′) = p − 1
generated by x− δf and x− δg, respectively.

As u 
= v, there exists an integer t0, t0 ≥ 0, such that u(t0) 
= v(t0). We will
show the result holds according to the following two cases, respectively.

Case 1. If exactly one of u(t0) and v(t0) is equal to 0, without loss of generality,
let u(t0) = 0 and v(t0) 
= 0, then

u(t0 + j · s) = 0 for all j = 0, 1, ..., p− 2,

and
{v(t0 + j · s)|j = 0, 1, ..., p− 2} = {1, 2, ..., p− 1}.

Thus there exists an integer j0, 0 ≤ j0 ≤ p − 2, such that u(t0 + j0 · s) 
≡
v(t0 + j0 · s)(mod 2), so we get u 
≡ v(mod 2).

Case 2. If neither u(t0) nor v(t0) are equal to 0, then the sequences u′ =
(u(t0 + j · s))j≥0 and v′ = (v(t0 + j · s))j≥0 are m-sequences generated by x− δf

and x− δg, respectively. As u(t0) 
= v(t0), then u′ 
= v′. If δf 
= δg, then from the
assumption on p we know that u′ 
≡ v′(mod 2), thus u 
≡ v(mod 2). If δf = δg,
then from Lemma 1 we know that u′ 
≡ v′(mod 2), thus u 
≡ v(mod 2).

Remark 4. Note that when 2 is a primitive root modulo p, the assumption on
p corresponds to the case of Conjecture 1 when e = 1. It’s shown in [7] that
Conjecture 1 was verified by experiments for all primes p < 2, 000, 000, and
asymptotically for large prime p, the collection of counterexamples to Conjecture
1 is a vanishingly small fraction of the set of all decimations. In fact, this result
also holds if 2 is not a primitive root modulo p. Thus there exists large numbers
of such primes p.

Combining Theorem 1 and Theorem 2, we actually show that almost all deci-
mations of any generalized l -sequence are cyclically distinct.
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4 Conclusions

In this article, a new kind of sequences called generalized l -sequences is intro-
duced and the distinctness of their decimations is shown. It’s well-known that
l -sequences can be easily generated by the FCSRs, thus how to effectively gener-
ate these generalized l -sequences is an open problem. Moreover, research on the
pseudorandom properties of these generalized l -sequences is also an interesting
thing.
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Appendix

In this section, we give the proofs of Lemma 1 and Lemma 2 that appeared in Sec-
tion 3. Such lemmas also appeared in the doctoral dissertation of Zhu, see [17].

Lemma 1. [20] Let f(x) be a primitive polynomial over Z/(p) with p an odd
prime. Then for any u, v ∈ G′(f(x), p), u = v if and only if u ≡ v(mod 2).

Proof. The necessary condition is obvious. We need only to show if u ≡ v(mod
2), then u = v.

If u and v are linear dependent over Z/(p), that is, there exists an integer
λ ∈ (Z/(p))∗, such that v ≡ λ · u(mod p). If λ is even, let t be an integer
such that u(t) = 1, then u(t) 
≡ v(t)(mod 2), which is in contradiction with
u ≡ v(mod 2). If λ is odd and λ 
= 1, let k be the least positive integer such
that (k − 1)λ < p < kλ, and let t be an integer such that u(t) = k. Since
(kλ(mod p))(mod 2) = (kλ − p)(mod 2) 
= k(mod 2), then u(t) 
≡ v(t)(mod 2),
which is in contradiction with u ≡ v(mod 2). Thus λ = 1 and u = v.

If u and v are linear independent over Z/(p), since u and v are m-sequences
generated by the same polynomial f(x), then there exists an integer t such
that u(t) = 0 and v(t) = 1. So we have u(t) 
≡ v(t)(mod 2), which is also in
contradiction with u ≡ v(mod 2). Thus u = v.

Lemma 2. [20] Let p be an odd prime, λ, α, β ∈ (Z/(p))∗ with α ≡ λβ(mod p),
and δ ∈ Z/(p) with δ ≡ 0(mod 2). If 1 ≤ λ ≤ p− 2, then there exists a positive
integer j, 1 ≤ j ≤ p− 1, such that

(jα(mod p))(mod 2) 
= ((jβ + δ)(mod p))(mod 2).

Proof. Since α ≡ λβ(mod p), we have

{( j ·α(mod p), (j · β + δ)(mod p)) | j = 0, 1, . . . , p− 1}
= {(j · λ(mod p), (j + δ)(mod p)) | j = 0, 1, . . . , p− 1}.

Thus we need only to show there exists a positive integer j, 1 ≤ j ≤ p− 1, such
that

(jλ(mod p))(mod 2) 
= ((j + δ)(mod p))(mod 2). (6)

1. λ = 1.
As δ is even, set j = p− δ, then jλ(mod p) = p− δ is odd, but (j + δ)(mod

p) = 0 is even, thus (6) holds.
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2. 2 ≤ λ ≤ p− 2, and δ < p− 1.
If λ is even, set j = 1, then jλ( mod p) = λ is even, but (j+δ)( mod p) = 1+δ

is odd, thus (6) holds.
If λ is odd, let k1 be the least positive integer such that (k1−1)λ < p < k1λ <

2p and k2 be the least positive integer such that (k2− 1)λ < 2p < k2λ < 3p. It’s
clear that 2 ≤ k1 < k2 < p.

(2.1) If k1 < p − δ, then (k1λ(mod p))(mod 2) = (k1λ − p)(mod 2) 
=
k1(mod 2), but (k1 + δ)(mod 2) = k1(mod 2). Set j = k1, then (6) holds.

(2.2) If k1 = p − δ, from k2 > k1 = p − δ and 2p < k2λ < 3p we have
(k2λ(mod p))(mod 2) = k2λ − 2p(mod 2) = k2(mod 2), and ((k2 + δ)(mod
p))(mod 2) = (k2 + δ − p)(mod 2) 
= k2(mod 2). Set j = k2, then (6) holds.

(2.3) If k1 > p−δ, then from the definition of k1 we know that 0 < (p−δ)λ < p.
Set j = p − δ, then jλ(mod p) = (p − δ)λ is odd, but (j + δ)(mod p) = 0 is
even, thus (6) holds.

3. 2 ≤ λ ≤ p− 2, and δ = p− 1.
In this case, we need only to show there exists a positive integer j, 1 ≤ j ≤

p− 1, such that

(jλ(mod p))(mod 2) 
= ((j − 1)(mod p))(mod 2). (7)

If λ is odd, set j = 1, then jλ(mod p) = λ is odd, but (j − 1)(mod p) = 0 is
even, thus (7) holds.

If λ is even, then 2 ≤ λ ≤ p− 3. Let k be the least positive integer such that
kλ(mod p) < p− λ. As 2 ≤ λ ≤ p− 3, then p− λ ≥ 3, and 1 ≤ k ≤ p− 2. Thus
(kλ(mod p))(mod 2) = ((k + 1)λ(mod p))(mod 2). Since (k − 1)(mod 2) 
=
k(mod 2), set j1 = k, j2 = k + 1, then either (j1λ(mod p))(mod 2) 
= ((j1 −
1)(mod p))(mod 2) or (j2λ(mod p))(mod 2) 
= ((j2 − 1)(mod p))(mod 2), thus
(7) holds.

Remark 5. The case when δ = 0 is not included in the original result of [20], but
the proof is the same, so we include it here.
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Abstract. In this paper we investigate FCSR memory sequences in two
aspects, period and complementarity property. We show that an FCSR
memory sequence shares the same period with its associated binary se-
quence for a special kind of connection integers. Especially, binary se-
quences generated by an FCSR with such connection integers contain
most of the l-sequences. Furthermore, for an l-sequence a with the min-
imum connection integer q and m = (m0, m1, ...) its memory sequence,
we prove mi + mi+T/2 = w− 1 for i ≥ 0, where T = per(a) and w is the
Hamming weight of q + 1.

1 Introduction

Feedback with Carry Shift Registers (FCSRs) were introduced by M. Goresky
and A. Klapper in [1]. The main characteristic of an FCSR is the fact that the
elementary additions are not additions modulo 2 but with propagation of carries.

Assume q is a positive odd integer, r = �log2(q + 1)	(where � 	 denotes the
integer part), and q + 1 = q12 + q222 + ...+ qr2r is the binary representation of
q + 1. Let wt(q + 1) be the number of nonzero qi for 1 ≤ i ≤ r, the Hamming
weight of q + 1. Figure 1 depicts an r-stage FCSR with connection integer q,
where

∑
denotes integer addition:

q1 q2 qr-1 qr

an+r-1 an+r-2 … an+1 an

…

mn

Fig. 1. Feedback with carry shift register

The shift registers and the memory register at any given clock time consist
of r bits and a memory integer respectively, which is denoted by (mn; an+r−1,
an+r−2,..., an) and called the state of the FCSR at the nth clock time or just
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state for short. Especially, (m0; ar−1, ar−2, ..., a0) is called the initial state. The
operation of the FCSR at the nth clock time is defined as follows:

(1) Compute integer addition: σn =
∑r

k=1 qkan+r−k +mn;
(2) Shift the contents of r shift registers one step to the right, outputting the

rightmost bit an;
(3) Place an+r = σn (mod 2) into the leftmost shift register;
(4) Replace the memory integer mn with mn+1 = (σn − an+r)/2 = �σn/2	.

We shall say that a state is periodic if, left to run, the FCSR will eventually
return to that same state.

Recently, many research papers have been done on pseudorandom properties
of FCSR sequences, such as [2]-[5]. On the other hand, new pseudorandom gen-
erators based on FCSRs have also been designed and studied, such as F-FCSR
[6]. Although so much progress has been achieved on FCSRs and their output
sequences, in point of developing the design of stream ciphers, there are still
some most basic properties inside FCSR architecture worth our discovering.

The memory register ingeniously introduces the nonlinear architecture into
FCSR, which greatly separates the FCSR sequences from traditional LFSR se-
quences. In spite of this, we should also see that its effects are limited, for FCSR
sequences share many of the important properties with LFSR sequences and
they are comparable in many aspects. In this paper, we shift our attention on
FCSR sequences to their memory sequences and mainly concerns the periodicity
and the complementarity property of them. For the periodicity, in Section 2.2
we show that an FCSR memory sequence shares the same period with its asso-
ciated binary sequence for a special kind of connection integers. l-sequences, the
counterpart of m-sequences in the domain of LFSR sequences, are an important
kind of FCSR sequences. Especially, binary sequences generated by FCSRs with
such connection integers contain most of the l-sequences. Then, for an l-sequence
a with the minimum connection integer q and m = (m0,m1, ...) its memory se-
quence, in Section 2.3 we prove mi +mi+T/2 = w−1 for i ≥ 0, where T = per(a)
is the period of a and w is the Hamming weight of q + 1. This property is quite
similar with the fact that the second half of one period of an l-sequence is the
bitwise complement of the first half.

2 Main Results

2.1 Preminilaries

The following two lemmas are from [7].

Lemma 1 ([7]). Let a be an ultimately periodic binary sequence. Then α =∑∞
i=0 ai2i is a quotient of two integers, p/q, and the denominator q is the con-

nection integer of an FCSR which generates the sequence a. Furthermore, a is
periodic if and only if α ≤ 0 and | α |≤ 1.
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Lemma 2. [7] Let integer q = q0 +q12+q222 + ...+qr2r, where q0 = −1, qr = 1
and qi ∈ {0, 1} for 1 ≤ i ≤ r − 1. Let a = (a0, a1, a2, ...) be an output sequence
of an FCSR with connection integer q and initial state (m0; ar−1, ..., a0). Then∑∞

i=0 ai2i = p/q, where p =
∑r−1

k=0

∑k
i=0 qiak−i2k −m02r.

From Lemma 1 and Lemma 2, it is clear that the initial memory m0 of an FCSR
with connection integer q which generates the sequence a is uniquely determined
by a and q, and so the memory sequence m is also uniquely determined by them.
Therefore, from now on, m = (m0,m1, ...) is called the memory sequence of (a, q)
and always referred as an integer sequence, while other sequences are referred as
binary sequences.

If a sequence a can be generated by an FCSR with connection integer q, then
we also call q a connection integer of a. The least connection integer of a is
called the minimum connection integer of a. Consequently, we have following
well-known corollary and the proof is omitted.

Corollary 1. If a is an FCSR sequence with the minimum connection integer
q, then any connection integer q′ of a is divisible by q. Suppose k ≥ 0 and q′′ is
the minimum connection integer of Lka(Lka = (ak, ak+1, ...)), then q′′ | q. If a
is periodic, then q′′ = q.

Theorem 1. Let a be an FCSR sequence with connection integer q and m the
memory sequence of (a, q). Then Lim = (mi,mi+1, ...) is the memory sequence
of (Lia, q) for i ≥ 0. Furthermore, the period of the state sequence

(m0; ar−1, ..., a0), (m1; ar, ..., a1), ...,

where r = �log2(q + 1)	, is equal to that of the sequence a.

Proof. Since Lia can be generated by an FCSR with connection integer q and
initial state (mi; ar+i−1, ..., ai), Lim = (mi,mi+1, ...) must be the unique mem-
ory sequence of (Lia, q). Suppose the period of the state sequence is T1 and that
of the sequence a is T2. It is clear that T2 | T1. Since a is ultimately periodic,
there exists i0 such that Li0a is periodic, and so the memory sequence of (Lia, q)
is the same with that of (Li+T2a, q) for any i ≥ i0. Thus, mi = mi+T2 for i ≥ i0,
which implies T1 | T2, and so we have T1 = T2.

By Theorem 1, we can immediately get

Corollary 2. Let a be an FCSR sequence with connection integer q and m the
memory sequence of (a, q). Then per(m) | per(a).
It is natural to ask whether per(m) is equal to per(a). Experimental results show
that the answer is not always affirmative, but it is most likely to be valid for
l-sequences.

2.2 Periods of Memory Sequences

In this subsection, we try to theoretically solve the question proposed at the
end of the last subsection for sequences with connection integers of which 2 is
primitive modulo every prime factor p but 2p−1 is not divisible by p2.
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Definition 1. Let ξ be a primitive nth root of unity over Q. Then the polynomial

Qn(x) =
n∑

s=1
gcd(s,n)=1

(x− ξs)

is called the nth cyclotomic polynomial over Q.

Remark 1. Qn(x) is an irreducible polynomial over Z with degree φ(n).

Lemma 3. Let a be an FCSR sequence with connection integer q = −1 + q12 +
q222 + ...+ qr2r and m the memory sequence of (a, q). If per(m) 
= per(a), then
there exists a positive factor t > 1 of per(a) such that Qt(2) divides q.

Proof. Suppose a is periodic, and so is m by Theorem 1. Setting per(a) = T and
per(m) = S, we obtain S | T by Corollary 2. Put

δi = q1ai+r−1 + ...+ qrai,

for i ≥ 0. Thus

ai+r ≡ δi +mi (mod 2),mi+1 = �(δi +mi)/2	,

for i ≥ 0. Assume there exists a pair of integers i and j such that

mi = mj ,mi+1 = mj+1. (1)

(1) If δi ≡ δj (mod 2), then δj = δi + 2k for some integer k. Using (1), we
have

mi+1 = �(δi +mi)/2	 = k + �(δi +mi)/2	 = mj+1,

so that, k = 0, δj = δi and ai+r = aj+r.
(2) If δi ≡ δj + 1 (mod 2), then δj = δi + 1 + 2k for some integer k. Again

using (1), we have

mi+1 = �(δi +mi)/2	 = k + �(δi + 1 +mi)/2	 = mj+1.

Hence, if δi +mi ≡ 0 (mod 2), then k = 0, δj = δi + 1, ar+i = 0 and ar+j = 1.
Otherwise, δi +mi ≡ 1 (mod 2), and k = −1, δj = δi − 1, ar+i = 1, ar+j = 0.

Combining above two aspects, we can conclude that

if mi = mj and mi+1 = mj+1, then δj − δi = ar+j − ar+i. (2)

For any i ≥ 0, we have

qrai + qr−1ai+1 + ...+ q1ai+r−1 = δi, (3)

qrai+S + qr−1ai+S+1 + ...+ q1ai+S+r−1 = δi+S . (4)

Subtracting (4) from (3) leads to

qr(ai − ai+S) + qr−1(ai+1 − ai+S+1) + ...+ q1(ai+r−1 − ai+S+r−1) = δi − δi+S .
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Since m is periodic and per(m) = S, it follows from the conclusion (2) that

δi − δi+S = ai+r − ai+r+S ,

and so

qr(ai−ai+S)+qr−1(ai+1−ai+S+1)+ ...+q1(ai+r−1−ai+S+r−1) = ai+r−ai+r+S

(5)
for any i ≥ 0.

Let integer sequence c = a− LSa(componentwise integer subtraction). Since
S 
= T , c 
= 0. By (5) we get that c satisfies following linear recurrence relation

qrci + qr−1ci+1 + ...+ q1ci+r+1 = ci+r

for i ≥ 0, over Z, implying f(x) = xr − (q1xr−1 + q2x
r−2 + ... + qr) ∈ Z[x] is a

characteristic polynomial of c.
Consider a and c as sequences over Q. Let ma(x) ∈ Q[x] be the minimum

polynomial of a and mc(x) ∈ Q[x] the minimum polynomial of c. Then mc(x) =
ma(x)/ gcd(ma(x), 1− xS). per(a) = T implies ma(x) | (xT − 1), and so we may
assume

ma(x) = Qt1(x)Qt2(x) · · ·Qth
(x), lcm(t1, ..., th) = T (6)

and
mc(x) = Qt1(x)Qt2 (x) · · ·Qtg (x), 1 ≤ g ≤ h. (7)

Since xT − 1 has no multiple factor and (x − 1) | (xS − 1), all ti > 1 for
1 ≤ i ≤ g. We have shown that f(x) is a characteristic polynomial of c,
so Qt1(x)Qt2 (x) · · ·Qtg (x) | f(x). Besides all cyclotomic polynomials are self-
reciprocal except Q1(x), thus

Qt1(x)Qt2(x) · · ·Qtg(x) | f∗(x) = xnf(1/x). (8)

Then it follows that

Qt1(2)Qt2(2) · · ·Qtg(2) | f∗(2) = −q. (9)

Note that g ≥ 1 and ti > 1 for 1 ≤ i ≤ g, therefore the proof is complete for
periodic sequences.

If a is not periodic but ultimately periodic, then Li0a is periodic for some i0.
After replacing a with Li0a and m with Li0m, the above proof is also valid.

In the sequel, we will see that Lemma 3 plays a role in converting the problem of
periods of memory sequences to some solved classical number theory problems.
For any integers a and b, ordb(a) denotes the multiplicative order of a modulo
b, that is, ordb(a) is the least positive integer m such that am ≡ 1 (mod b).

Definition 2. [8] Let a and n be integers greater than 1, then a prime p is
called a Zsigmondy prime for < a, n > if p does not divide a and ordp(a) = n. A
Zsigmondy prime p for < a, n > is called a large Zsigmondy prime for < a, n >
if p > n+ 1 or p2 | (an − 1).
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Lemma 4. [8] For any integer n > 1, there exists a Zsigmondy prime for <
2, n > except n = 6. If p is an odd prime with ordp(2) = p− 1 and e a positive
integer, then p2 does not divide Qpe(p−1)(2), and p is the unique prime that
divides Qpe(p−1)(2) but non Zsigmondy prime for < 2, pe(p− 1) >.

Lemma 5. [8] Let p be an odd prime with ordp(2) = p − 1 and e a positive
integer. There exists a large Zsigmondy prime for < 2, pe−1(p − 1) > except
pe ∈ {3, 5, 7, 9, 11, 13, 19}.

Remark 2. Q6(2) = 3, Q18(2) = 3× 19, Qp−1(2) = p for p ∈ {3, 5, 11, 13}.
Lemma 6. Let q = pe1

1 p
e2
2 · · · peb

b , where ei is non negative integer and pi is
prime greater than 13 such that ordpi(2) = pi− 1 and (2pi−1− 1) is not divisible
by p2

i , 1 ≤ i ≤ b. Then for any positive integer Y > 1, q is not divisible by
QY (2).

Proof. Assume QY (2) | q. By Lemma 4, QY (2) has a Zsigmondy prime of <
2, Y > except Y = 6. Since Q2(2) = 3, Q6(2) = 3, Q18(2) = 3 × 19 and pi 
= 3
for 1 ≤ i ≤ b, Y /∈ {2, 6, 18}. Suppose for some 1 ≤ j ≤ b, pj is a Zsigmondy
prime of < 2, Y >. Then Y = pj − 1, since ordpj(2) = pj − 1, which implies pj is
the unique prime factor of q that is a Zsigmondy prime of < 2, Y >. But QY (2)
has a large Zsigmondy prime r 
= pj of < 2, Y > by Lemma 5. Thus, r 
= pi for
any 1 ≤ i ≤ b, which contradicts with the assumption. Therefore, QY (2) does
not divide q and the proof is complete.

Combing Lemma 3 and Lemma 6, we can easily get

Theorem 2. Let a be a sequence with connection integer q in Lemma 6 and m
the memory sequence of (a, q). Then per(a) = per(m).

Recall that a periodic sequence a with the minimum connection integer q is
called an l-sequence if per(a) = φ(q), that is, 2 is primitive modulo q. Such q
must be a prime power pe with ordp(2) = p − 1 and (2p−1 − 1) is not divisible
by p2. Then especially for l-sequences, we have

Corollary 3. Let a be an l-sequence with the minimum connection integer pe

and m the memory sequence of (a, pe). If p /∈ {3, 5, 11, 13}, then per(m) = per(a).

As for p ∈ {3, 5, 11, 13} and integer e > 1, from the proof of Lemma 3, we can
deduce that

Corollary 4. Let a be an l-sequence with the minimum connection integer pe

and m the memory sequence of (a, pe), where e > 1, then per(m) is divisible by
pe−1 except pe = 9.

Proof. Since a is an l-sequence, per(a) = pe−1(p− 1). Then at least one ti in (6)
is divisible by pe−1, 1 ≤ i ≤ h. So it suffices to prove any ti in (7) is not divisible
by pe−1 for 1 ≤ i ≤ g. On one hand, since ordp(2) = p−1, ti is divisible by p−1
for all 1 ≤ i ≤ g by (9). On the other hand, from Lemma 4, for 1 ≤ i ≤ e − 1,
Qpi(p−1)(2) must has at least one Zsigmondy prime of < 2, pi(p−1) > that is not
equal to p except p = 3 and i = 1. Thus, (9) is valid only for g = 1, t1 = p− 1 or
g = 2, t1 = p− 1, t2 = p(p− 1) if p = 3. Therefore, except pe = 9, pe−1| per(m).
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Remark 3. We completely solved the case of p = 3 and 5 at the end of next
subsection.

Other than Theorem 2 and Corollary 3, we have some sufficient conditions that
the period of the memory sequence is equal to that of the FCSR sequence for
more general connection integers, but they are quite incomplete and need further
improvements. Besides, the cases where they are not equal indeed exist, for
example, a sequence with the minimum connection integer 135 has period 12,
while the period of its memory sequence is equal to 6.

2.3 Complementarity Property of Memory Sequences

Following is the well known complementarity property of l-sequences.

Lemma 7. [7] If a is an l-sequence, then ai + ai+T/2 = 1 for i ≥ 0, where T =
per(a).

We will prove that the memory sequence of an l-sequence possesses similar com-
plementarity property as what is showed in Lemma 7.

Lemma 8. [7] Let a be a periodic FCSR sequence with connection integer q and
m the memory sequence of (a, q). Then 0 ≤ mi < wt(q + 1) for i ≥ 0.

Theorem 3. Let a be an l-sequence with the minimum connection integer q =
−1 + q12 + q222 + ... + qr2r and m the memory sequence of (a, q). Then mi +
mi+T/2 = w − 1 for i ≥ 0, where T = per(a) and w = wt(q + 1).

Proof. Recall the definition of δi in Theorem 2, then it follows from Lemma 7
that δT/2+i = w − δi for i ≥ 0 and

(mi + δi) + (mi+T/2 + w − δi) = 1 (mod 2).

Thus, we get
mi +mi+T/2 = w − 1 (mod 2). (10)

If w ≤ 2, then mi = 1 or 0 by Lemma 8, so that the result follows from (10).
Next, we consider the case w ≥ 3.

By Lemma 2,
∑∞

i=0 ai2i = p/q such that p is given by

p = a0q12 + (a0q2 + a1q1)22 + (a0q3 + a1q2 + a2q1)23 + ...+
(a0qr−1 + ...+ ar−2q1)2r−1 − (a0 + a12 + a222 + ...+ ar−12r−1)−m02r.

Set

A = a0q12 + (a0q2 + a1q1)22 + (a0q3 + a1q2 + a2q1)23 + ...+
(a0qr−1 + ...+ ar−2q1)2r−1 − (a0 + a12 + a222 + ...+ ar−12r−1).

Since a is periodic, it follows from Lemma 1 that

−q < A−m02r < 0.
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Thus we obtain
−m02r < −A < q −m02r. (11)

By Corollary 1, q is also the minimum connection integer of LT/2a and
LT/2m is the memory sequence of (LT/2a, q). Then by Lemma 1 and Lemma 7,∑∞

i=T/2 ai2i = p′/q, where p′ is given by

p′ = (1− a0)q12 + ((1− a0)q2 + (1 − a1)q1)22 + ...+
((1− a0)qr−1 + ...+ (1− ar−2)q1)2r−1 − ((1 − a0) +
(1− a1)2 + (1 − a2)22 + ...+ (1− ar−1)2r−1)−mT/22r

= q12 + (q1 + q2)22 + ...+ (q1 + q2 + ...+ qr−1)2r−1

−(1 + 2 + ...+ 2r−1)−A−mT/22r.

Set

B = q12 + (q1 + q2)22 + ...+ (q1 + q2 + ...+ qr−1)2r−1 − (2r − 1). (12)

Then we have
p′ = B −A−mT/22r.

Since LT/2a is periodic, again it follows from Lemma 1 that

− q < B −A−mT/22r < 0. (13)

For the upper bound of B, we obtain from (12) that
(1) If w = r, then B = (w − 3)2w + 3.
(2) If w ≤ r − 1, then

B ≤ 2 + 2 · 22 + ...+ (w − 1)2w−1 + (w − 1)2w + ...+ (w − 1)2r−1 − (2r − 1)
= (w − 2)2w + 2 + (w − 1)(2r − 2w)− (2r − 1)
= (w − 2)2r + 3− 2w

Above combined with −A < q −m02r by (11), we have
(1) If w = r, then

B −A−mT/22r

< (w − 3)2w + 3 + q − (m0 +mT/2)2w

Thus, it follows from (13) that

(w − 3)2w + 3 + q − (m0 +mT/2)2w ≥ −q + 2,

that is
(w − 3)2w + 1 + 2q ≥ (m0 +mT/2)2w.

Since q + 1 = 2w+1 − 2, we obtain

(w − 3)2w + 1 + 2(2w+1 − 3) ≥ (m0 +mT/2)2w,
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that’s also
(w + 1)− 5/2w ≥ m0 +mT/2. (14)

Since w ≥ 3 implies 5/2w < 1, it follows from (14) that m0 + mT/2 ≤ w. But
(10) implies m0 +mT/2 
= w, and so m0 +mT/2 ≤ w − 1.

(2) If w ≤ r − 1, then

B −A−mT/22r

< (w − 2)2r + 3− 2w + q − (m0 +mT/2)2w.

It follows from (13) that

(w − 2)2r + 3− 2w + q − (m0 +mT/2)2r ≥ −q + 2,

that is
(w − 2)2r + 1− 2w + 2q ≥ (m0 +mT/2)2r,

Since q + 1 ≤ 2r+1 − 4, we obtain

(w − 2)2r + 1− 2w + 2(2r+1 − 5) ≥ (m0 +mT/2)2r,

that is
(w + 2)− (9 + 2w)/2r ≥ m0 +mT/2.

Therefore, we get w + 1 ≥ m0 +mT/2.
For any i ≥ 0, it is easy seen that the above proof is also valid for Lia.

Therefore, we can conclude that

mi +mi+T/2 ≤ w + 1

for i ≥ 0.
If mi +mT/2+i = w + 1 for any i ≥ 0, then considering the case of i = 1, we

have

m1 = �(m0 + δ0)/2	
mT/2+1 = �(mT/2 + δT/2)/2	

= w − �(m0 + δ0 − 1)/2�

and so

m1 +mT/2+1 = w − �(m0 + δ0 − 1)/2�+ �(m0 + δ0)/2	 = w,

a contradiction. Therefore, we must have some integer i ≥ 0 such that mi +
mi+T/2 ≤ w − 1.

Let us take i = 0, and clearly the discussion for any other case is the same.
Suppose m0 +mT/2 = w − k, w ≥ k ≥ 1. Thus

m1 = �(m0 + δ0)/2	
mT/2+1 = �(mT/2 + δT/2)/2	

= �(w − k −m0 + w − δ0)/2	
= w − �k +m0 + δ0)/2�
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where � � denotes the next largest integer. Therefore,

m1 +mT/2+1 = w − �k +m0 + δ0)/2�+ �(m0 + δ0)/2	.
(a) If m0 + δ0 ≡ 0 (mod 2), then m1 +mT/2+1 = w − �k/2�;
(b) If m0 + δ0 ≡ 1 (mod 2), then m1 +mT/2+1 = w − �(k + 1)/2�.
Then similarly, we can get

m2 +mT/2+2 ∈ {w − �
�k

2 �
2
�, w − �

�k
2 �+ 1

2
�, w − �

�k+1
2 �
2
�, w − �

�k+1
2 �+ 1

2
�},

and so on for i ≥ 3.
According to above deduced recurrence relation, we can obtain

mi +mT/2+i ≤ w − k/2i

for any i ≥ 0, so that
mi +mT/2+i ≤ w − 1 (15)

for any i ≥ 0.
On the other hand, we can also obtain

mi +mT/2+i ≥ w − k/2i − (1 + 1/2 + 1/22 + ...+ 1/2i−1)

= w − 2− (k − 2)/2i

for any i ≥ 1. Since i is arbitrary and m is periodic, we have mi+mT/2+i ≥ w−2
for i ≥ 0. Note that (10) implies mi +mT/2+i 
= w − 2, and so

mi +mT/2+i ≥ w − 1 (16)

for i ≥ 0.
Hence, it follows from (15) and (16) that mi +mT/2+i = w − 1 for i ≥ 0.

By Theorem 3, for an l-sequence a and its memory sequence m, if per(m) |
per(a)/2, then per(m) = 1 and w − 1 is even. From this fact, we can get

Corollary 5. Let a be an l-sequence with the minimum connection integer pe

and m the memory sequence of (a, pe). If p = 5 or p = 3 and e > 2, then
per(m) = per(a).

Proof. We only need to prove the case of p = 5, since the proof for the other case
is completely the same. On one hand, we have per(a) = 5e−1 · 4 and per(m) |
per(a). On the other hand, from Corollary 4, we have 5e−1 | per(m). So, it suffices
to prove per(a)/2 is not divisible by per(m). If wt(5e + 1)− 1 is odd, then it is
evident that per(a)/2 is not divisible by per(m). If wt(5e + 1) − 1 is even and
per(m) | per(a)/2, then per(m) = 1, which contradicts with Corollary 4 except
e = 1. So, we again come to the conclusion that per(a)/2 is not divisible by
per(m) except e = 1. For e = 1 and per(m) = 1, by the proof of Lemma 3 and
(8), x2−x− 1(corresponds to 5+1 = 2+22) is divisible by Q4(x) = x2 +1 over
Q, which is clearly impossible. Therefore, when e = 1, per(m) = per(a).

Remark 4. Similarly, for pe = 11e and 13e, where e > 1, we have per(a)/5 |
per(m) and per(a)/3 | per(m) respectively. For pe = 3 and 9, experimental
results show that per(m) = 1 and 6 respectively.
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Abstract. This is a study of some of the elementary statistical prop-
erties of the bitwise exclusive or of two maximum period feedback with
carry shift register sequences. We obtain conditions under which the
resulting sequences has the maximum possible period, and we obtain
bounds on the variation in the distribution of blocks of a fixed length.
This may lead to improved design of stream ciphers using FCSRs.
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1 Introduction

The summation combiner [8] is a stream cipher in which two binary m-sequences
are combined using addition-with-carry. This cipher attracted considerable at-
tention during the 1980’s because it was fast, simple to construct in hardware,
and the linear span of the resulting combined sequence was known to approach
its period, which is approximately the product of the periods of the constituent
sequences.

The security of the summation combiner was called into question following
the introduction of feedback-with-carry shift registers, or FCSRs [4], [5], and
the associated rational approximation algorithm [5]. This is because the 2-adic
complexity of the output of the summation combiner is no more than the sum
of the 2-adic complexities of the constituent sequences. Nevertheless, the sum-
mation combiner remains an interesting and difficult to analyze procedure for
generating pseudorandom sequences and many basic questions concerning this
combiner have never been satisfactorily addressed.

One might just as well consider the reverse procedure, and combine two binary
FCSR sequences using binary addition (“XOR”). Sequences of this type are just
as difficult to analyze, which perhaps explains why they have been largely ignored
despite having been suggested ten years ago [5], [9].
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Recall that a binary �-sequence is a maximal length FCSR sequence [4] of 0’s
and 1’s. Such a sequence is obtained whenever the connection integer q ≥ 3 is
a prime number such that 2 is a primitive root modulo q. The period of such
an �-sequence is q − 1 and it is known to have a number of desirable statistical
properties, one of which is that the number of occurrences of any given block
f = (f0, f1, · · · , fk−1) of size k differs at most by one, as f ranges over all 2k

possibilities [4].
In this paper we consider “combining” two distinct �-sequences a = (a0, a1,

· · · ) and b = (b0, b1, · · · ) using addition modulo 2 (or “XOR”, denoted ⊕) to
obtain a sequence c = (c0, c1, . . .) with cj = aj ⊕ bj . Suppose a is the �-sequence
that is generated by an FCSR with connection polynomial q and that b is the
�-sequence that is generated by an FCSR with connection polynomial r. We are
interested in the resulting sequence c, perhaps as a possible constituent in a
stream cipher — there is experimental evidence (not reported on in this paper)
that the 2-adic complexity is close to half its period.

We first show that the combined sequence c will have maximal period if one
of the periods, say, q−1 is divisible by 4, if the other period, r−1 is not divisible
by 4, and if no odd prime divides both.

We also consider the distribution properties of these sequences. That is, we
bound the number of occurrences of each block of size k within such a sequence.
We are able to show that by careful choice of the constituent sequences it is
possible to guarantee good distribution properties for the resulting combined
sequence. The precise statement is given in Theorem 3.

2 Recollections on Binary FCSR Sequences

Let q > 2 be a prime number, the connection integer. Let s = ordq(2) be the
smallest integer such that 2s ≡ 1 (mod q) or equivalently, such that q divides
2s − 1.

For any integer h, with 0 ≤ h < q, the base-2 expansion of the fraction h/q
will be periodic with (minimal) period s. It is a binary sequence, meaning that
its symbols are taken from the alphabet Σ = Z/(2). These sequences have been
studied since the time of Gauss [3], [2] (p. 163). The reverse of this sequence is
known as an FCSR sequence [4], [5] since it is the output sequence of a feedback
with carry shift register with connection integer q, with cell contents taken from
Z/(2), and with initial loading that depends on h, cf. [5]. This FCSR sequence
can also be described as the 2-adic expansion of the fraction−h/q. To be explicit,
let 0 ≤ h ≤ q and suppose the 2-adic expansion

−h
q

= a0 + a12 + a222 + · · · (1)

(with ai ∈ {0, 1}) is periodic with period s. Then the sequence a = a0, a1, · · · is
an FCSR sequence. Its reverse is the base 2 expansion of the fraction h/q :
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h

q
=
as−1

2
+
as−2

22
+ · · ·+ a0

2s−1
+
as−1

2s
+ · · · (2)

as may easily be seen by summing the geometric series in (1) and (2).
The period s of such a sequence satisfies 0 ≤ s ≤ q−1. The period is maximal

(s = q−1) if and only if 2 is a primitive root modulo q, meaning that the distinct
powers 2j modulo q, account for all the nonzero elements in Z/(q). In this case
the base 2 expansion of h/q is known as a 1/q sequence [1] or as a Barrows-
Mandelbaum codeword [7]. Its reverse, the corresponding FCSR sequence, is
known as a (binary) �-sequence.

It is also known [5] that there exists B ∈ Z/(q) (the choice of which depends
on the value of h) such that

aj = B2−j (mod q) (mod 2) (3)

for all j, meaning that first B2−j ∈ Z/(q) is computed; this number is rep-
resented as an integer between 0 and q − 1, and it is then reduced modulo 2.
The q − 1 possible different non-zero choices of B ∈ Z/(q) give cyclic shifts of
the resulting sequence a, and this accounts for all the binary �-sequences with
connection integer q. The following fact was observed over a hundred years ago
[2, p. 163].

Lemma 1. Let a = a0, a1, a2, · · · be the binary �-sequence corresponding to the
fraction −h/q where 2 is primitive modulo the (odd) prime q, and where 0 <
h < q. Then

aj+ q−1
2
≡ q − aj ≡ q0 − aj (mod 2),

where q0 = q (mod 2). In other words, within any period of the �-sequence a,
the second half is the complement of the first half, [6].

Proof. Since 2 is primitive mod q, we have: 2q−1 ≡ 1 (mod q) hence 2
q−1
2 ≡

−1 (mod q) so 2−
q−1
2 ≡ −1 (mod q). It suffices to prove the lemma for any

single shift of the sequence a. Accordingly, we may take B = 1 in equation (3),
then calculate

aj+ q−1
2

≡ −2−j (mod q) (mod 2)

≡ (q − 2−j) (mod q) (mod 2)

If Aj ∈ {1, 2, · · · , q − 1} is the positive integer representation of the number
2−j (mod q) ∈ Z/(q) then 0 < q − Aj < q so q − Aj is the positive integer
representation of the number q− 2−j (mod q) ∈ Z/(q). Therefore, reducing this
equation modulo 2 gives

aj+ q−1
2
≡ q0 − aj (mod 2)

where q0 = q (mod 2) ∈ Z/(2).
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3 Period

In this section we describe a very general criterion which guarantees that the
period of a sequence c obtained by “combining” two periodic sequences a,b is
the least common multiple of the periods of a and b. It would surprise us to find
that this theorem is unknown, but we are not aware of its having appeared in
print.

Let Σ be an alphabet (i.e., a finite set). Let ) be a binary operation on Σ.
That is, ) : Σ ×Σ → Σ. We write a) b for the value of ) at (a, b).

Definition 1. The operation ) is cancellative if for all a, b, c ∈ Σ, if a ) b =
a) c, then b = c.

Theorem 1. Let a = (a0, a1, · · · ) be a periodic sequence of (minimal) period n
with each ai ∈ Σ, and let b = (b0, b1, · · · ) be a periodic sequence of (minimal)
period m with each bi ∈ Σ. Let c = (c0, c1, · · · ) be the sequence with ci = ai ) bi
for each i. Suppose that for every prime r, the largest power of r that divides n
is not equal to the largest power of r that divides m. Then c is periodic and the
period of c is the least common multiple of n and m.

Proof. It is straightforward to see that c is periodic and its (least) period di-
vides the least common multiple of n and m. Let t denote the (least) period of
c. Suppose that t < lcm(n,m). Then there is some prime r so that t divides
lcm(n,m)/r. In particular, c has lcm(n,m)/r as a period.

Suppose that the largest power of r dividing n is re and the largest power of
r dividing m is rf . By symmetry we may assume that e < f . Thus the largest
power of r dividing lcm(n,m)/r is rf−1, so n divides lcm(n,m)/r and m does
not divide lcm(n,m)/r. For every i we have

ai ) bi = ci

= ci+lcm(n,m)/r

= ai+lcm(n,m)/r ) bi+lcm(n,m)/r

= ai ) bi+lcm(n,m)/r.

By the cancellative property of ), it follows that for every i,

bi = bi+lcm(n,m)/r.

But this contradicts the fact that lcm(n,m)/r is not a multiple of the minimal
period of b, and thus proves the theorem. �

Corollary 1. Let a = (a0, a1, · · · ), b = (b0, b1, · · · ) be binary �-sequences with
connection integers q and r respectively. Suppose that 4 divides q − 1 but does
not divide r − 1 and that no odd prime divides both q − 1 and r − 1 (so that
gcd(q − 1, r− 1) = 2). Then the sequence c = a⊕ b (mod p) obtained by taking
the termwise sum, modulo 2, of a and b has period (q − 1)(r − 1)/2.
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4 Distributions

By an occurrence of a block e = (e0, · · · , ek−1) in a sequence a of period n we
mean an index i, 0 ≤ i < n so that ai = e0, ai+1 = e1, · · · , ai+k−1 = ek−1. Recall
the following result of [1] (Theorem 1). See also [5].

Theorem 2. Let a = (a0, a1, · · · ) be a binary �-sequence with connection integer
q. Then the number of occurrences of any block e = (e0, e2, · · · , ek−1) of size k
in a varies at most by 1 as the block e varies over all 2k possibilities. That is,
there is an integer w so that every block of length k occurs either w times or
w + 1 times in a. The number of blocks of length k that occur w + 1 times is
q − 1 (mod 2k), and the number of blocks of length k that occur w times is
2k − (q − 1 (mod 2k)).

Proof. The first statement is explicitly given in [1] Theorem 1 (for the corre-
sponding 1/q sequence). The second statement follows immediately: let Q be
the number of blocks of length k that occur w + 1 times in a. Then

q − 1 = Q(w + 1) + (2k −Q)w
= 2kw +Q.

It follows that Q = q − 1 (mod 2k), as claimed. �

Throughout the remainder of this section we fix prime numbers q and r such that
2 is a primitive root modulo q and also modulo r. Let a = (a0, a1, · · · ) and b =
(b0, b1, · · · ) be binary �-sequences with connection integers q and r respectively,
(and thus periods q − 1 and r − 1 respectively). We will further assume that 4
divides q− 1, and that 4 does not divide r− 1, so that gcd(q− 1, r− 1) = 2. Let
c = a ⊕ b be the sequence obtained as sum, modulo 2 (or the exclusive or) of
these two sequences: ci = ai ⊕ bi (mod 2). According to Corollary 1, the period
of the sequence c is maximal, and is equal to (q − 1)(r − 1)/2.

Lemma 2. Let 0 ≤ i < q−1 and 0 ≤ j < r−1. Then in a full period of c, ai is
combined with bj if and only if j and i have the same parity. That is, there are
integers k and l with i+ k(q − 1) = j + l(r − 1) if and only if i ≡ j (mod 2) .

Proof. This is an application of the Euclidean theorem. The integer 2 is the
greatest common divisor q − 1 and r − 1. The integers i and j have the same
parity if and only if i− j is a multiple of 2, which by the Euclidean theorem is
equivalent to the existence of k and l. �

Lemma 3. Within any single period, the second half of the sequence c = a⊕ b
is the complement of the first half.

Proof. The second half of a period of the sequence a is the complement of the
first half and the same is true for the sequence b. Let T = (q − 1)(r − 1)/2 be
the period of c. Then

T

2
=
q − 1

2
· r − 1

2
=
q − 1

2
· odd =

r − 1
2
· even.
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Therefore aj+T/2 = aj and bj+T/2 = bj whenever 0 ≤ j < T/2. Here, aj denotes
the complement of aj ∈ Z/(2). Hence, for these values of j,

cj+T/2 = aj ⊕ bj = cj

which proves the lemma. �

Theorem 3. Fix k ≥ 0. Let Q = q − 1 (mod 2k) and let R = r − 1 (mod 2k).
Define

s =
min(Q,R)−max(0, Q+R− 2k)

2
.

Then the number of occurrences of a block e = (e0, e2, · · · , ek−1) of size k in
the sequence c = a ⊕ b varies at most by s as the block e varies over all 2k

possibilities.

Proof. Let b(1) = (b1, b2, · · · ) be the shift of the sequence b by one. Then we
claim that the sequence

d = a⊕ b(1)

is a shift of the sequence c = a⊕ b.
To prove this claim, note that because (r−3)/2 is even and gcd(r−1, q−1) = 2,

there exist integers � and m such that

r − 3
2

= m(q − 1)− �(r − 1).

That is,

m(q − 1) =
r − 3

2
+ �(r − 1).

Therefore, for all j,

dj+m(q−1) = aj+m(q−1) ⊕ b(1)j+ r−3
2 +�(r−1)

= aj+m(q−1) ⊕ bj+ r−1
2 +�(r−1)

= aj ⊕ bj+ r−1
2

= aj ⊕ bj
= cj .

since d is obtained by shifting b by one before adding it to a. By Lemma 3 the
sequence c is a shift of its complement, so d is also a shift of c.

Therefore, if we count the occurrences of each block of a fixed length k in both
c and d, then for each block we will have exactly twice the number of occurrences
of that block in c. However, in the construction of these two sequences, each
occurrence of each block of length k in a is matched with each occurrence of
each block of length k in b. Thus to count the occurrences of a block e of length
k in c, we want to count the number of pairs (i, j) where i is an occurrence of
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a block f in a, j is an occurrence of a block g in b, and f ⊕ g = e. That is,
g = f ⊕ e. Thus we sum over all blocks f of length k the number of occurrences
of f in a times the number of occurrences of f ⊕ e in b.

Let w denote the minimum number of occurrences of a block of length k in a,
so that by Theorem 2 every possible block of length k occurs either w or w + 1
times. Similarly, let z denote the minimum number of occurrences of a block of
length k in b, so that every possible block of length k occurs either z or z + 1
times. For a fixed block e of length k, as we have seen, the occurrences of a block
f of length k in a are matched with the occurrences of block e⊕ f in b. There
are four possibilities:

1. f occurs w times in a and e⊕ f occurs z times in b;
2. f occurs w + 1 times in a and e⊕ f occurs z times in b;
3. f occurs w times in a and e⊕ f occurs z + 1 times in b;
4. f occurs w + 1 times in a and e⊕ f occurs z + 1 times in b.

Let Yi denote the number of fs in case i above, i = 1, 2, 3, 4. Then the number
of occurrences of e in c is

Ne =
wzY1 + (w + 1)zY2 + w(z + 1)Y3 + (w + 1)(z + 1)Y4

2
. (4)

We have Y2 + Y4 = Q since cases (2) and (4) together account for all the blocks
f that occur w+1 times in a. Similarly, Y3 +Y4 = R, and Y1 +Y2 +Y3 +Y4 = 2k.
Thus Y1 = 2k−Q−R+Y4, Y2 = Q−Y4, and Y3 = R−Y4. Therefore, substituting
these values into (4) gives

Ne =
wz2k + zQ+ wR + Y4

2
.

It follows that the possible variation in Ne is one half the possible variation in Y4.
By the definition of Y4 we have Y4 ≤ min(Q,R) and Y4 ≥ 0. Also, Y2 ≤ 2k −R,
so that Y4 = Q − Y2 ≥ Q+ R − 2k. It follows that the possible variation in Y4

for various e is at most

min(Q,R)−max(0, Q+R− 2k).

The theorem follows immediately from this. �

Corollary 2. The sequence c is balanced and the distribution of consecutive
pairs in c is uniform.

Proof. Balance follows from the case of Theorem 3 when k = 1. The uniform
distribution of pairs follows from Theorem 3 with k = 2. In both cases the bound
s in the theorem equals zero. �

It follows from Theorem 3 that the sequence c = a ⊕ b is highly uniform if
min(Q,R)−max(0, Q+R− 2k) is small for all small k.

A small amount of experimental evidence indicates that this bound is very
close to optimal, in the sense that there are blocks of length k whose numbers
of occurrences differ by almost min(Q,R)−max(0, Q+ R − 2k)/2. Further ex-
perimentation is planned.
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5 Conclusions

It is apparent from these results how to look for pairs of �-sequences whose
exclusive ors have large period and for small k have near uniform distribution of
blocks of length k. This situation is an improvement over the situations for many
sequence generators that have been proposed previously as components of stream
ciphers – in many cases the period has not even been computed. On the basis
of experimentation we believe that our exclusive or sequences have other good
properties such as large 2-adic complexity. Before they are used as components
in stream cipher construction, however, we need to test them with the NIST test
suite and examine their resistance to other attacks such as correlation attacks
and algebraic attacks.
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Abstract. Partial correlation properties of sets of sequences are impor-
tant in CDMA system as well as in ranging, channel estimation and
synchronization applications. In general, it is desirable to have sequence
sets with small absolute values of partial correlations. In this paper, gen-
eralized lower bounds on partial aperiodic correlation of complex roots
of unity sequence sets with respect to family size, sequence length, sub-
sequence length, maximum partial aperiodic autocorrelation sidelobe,
maximum partial aperiodic crosscorrelation value and the zero or low
correlation zone are derived. It is shown that the previous aperiodic
sequence bounds such as Sarwate bounds, Welch bounds, Levenshtein
bounds, Tang-Fan bounds and Peng-Fan bounds can be considered as
special cases of the new partial aperiodic bounds derived.

1 Introduction

Sets of sequences with good correlation properties are important in code-division
multiple access (CDMA), spread-spectrum communications, as well as in ranging
and synchronization applications. Traditionally it is the periodic or aperiodic
auto- and crosscorrelation functions that have received most attention [1]-[8].
Partial correlations of sequences (where correlations are computed over only
subsequences of sequences) are much less well understood, but sequence sets
having low absolute values of partial correlation are important in certain types
of communications systems. In CDMA systems where many data bits are spread
by each copy of a user’s spreading sequences, it was shown in [9][10] how the
multiple-access capability of CDMA systems in which the period of the signature
sequences was much larger than the number of chips per data and multiple
data bits are spread by each sequence can be related to the mean square value
of partial correlation for sequence sets. In [11][12], a long sequence is used for
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synchronization, but the correlations are computed over only a short subsequence
of that sequence. It was shown that the performance of acquisition such as mean
acquisition time can be improved.

In 1998, Kenneth G. Paterson and Paul J. G. Lothian [13] derived a lower par-
tial periodic bound based on Welch’s technique [1]. But Paterson-Lothian bounds
does not apply to low correlation zone (LCZ) sequences or generalized orthogonal
(GO) sequences [14]-[19], which can be employed in quasi-synchronous CDMA
(QS-CDMA) to eliminate the multiple access interference and multipath inter-
ference. In 2000, Tang and Fan established bounds on the periodic and aperiodic
correlations of GO sequences based on Welch’s technique [1][2]. Peng and Fan
derived generalized Sarwate bounds on the periodic and aperiodic correlation for
binary and complex roots of unity sequences [3][4][6]-[8] including GO sequences
and pseudonoise sequences based on Levenshtein’s technique [20]. It was shown
that Peng-Fan bounds can include all the previous periodic and aperiodic bounds
as special cases, it is because that the pseudonoise sequences are special cases
of GO sequences, and the binary sequences are special cases of complex roots
of unity sequences. However, these bounds apply only to periodic and aperiodic
correlation over sequence length, and cannot cover partial aperiodic correlation
bounds of GO sequences. As far as the authors are aware, there is no research
work on the theoretical limits for GO sequences among the sequence length n,
subsequence length l, sequence set size M , maximum partial aperiodic autocor-
relation sidelobe value APlA, maximum partial aperiodic crosscorrelation value
APlC , and low correlation zone LCZ .

In this paper, our attention will be paid only to the partial aperiodic corre-
lation bounds and complex roots of unity sequences, not to the partial periodic
correlation bounds which have been discussed by the authors elsewhere. It will be
shown in the following sections that all the previous aperiodic sequence bounds
such as Sarwate bounds, Welch bounds, Levenshtein bounds, Tang-Fan bounds
and Peng-Fan bounds can be considered as special cases of the new partial ape-
riodic bounds derived.

2 Preliminaries

Let q be an arbitrary, positive, integer greater than 1, Zq={0,1,. . . ,q-1}, i =√
−1, ω=exp[i2π/q], E = {1, ω1,. . . , ωq−1}. Then x={x0,x1,. . . ,xn−1} ∈ En

is called a complex roots of unity sequence of length n, l denotes its subse-
quence length. When, q=2, then the complex roots of unity sequence becomes
the binary sequence. For any two such sequences x={x0,x1,. . . ,xn−1} and y =
(y0, y1, . . .yn−1), the partial aperiodic correlation functions APl(x, y; d) of x and
y are defined as follows:

APl(x, y; d) =

⎧⎪⎪⎨⎪⎪⎩
l∑

i=1

xiy
∗
i+d, d = 0, 1, · · · , n− l

n−d∑
i=1

xiy
∗
i+d, d = n− l + 1, · · · , n− 1

(1)

where y∗ denotes the complex conjugate of y.
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For C ⊆ En, M = |C|, the aperiodic low correlation zone LCZ, the aperiodic
low autocorrelation zone LACZ and the aperiodic low crosscorrelation zone LCCZ

of Care defined, respectively, as follows:

LCZ = min{LACZ, LCCZ}

LACZ = max{T | |APl(x, x; d)| ≤ APlA, ∀x ∈ C, 0 < |d| ≤ T }
and

LCCZ = max{T | |APl(x, y; d)| ≤ APlC , ∀x, y ∈ C, x 
= y, |d| ≤ T }

A sequence set C with LCZ >0 is called aperiodic low correlation zone (LCZ)
set if APlM ≥ 0 where APlM = max{APlA, AP lC}, and APlA denotes maxi-
mum partial aperiodic autocorrelation sidelobe, APlC denotes maximum partial
aperiodic crosscorrelation value respectively.

For any sequence x = {x0, x1, . . ., xn−1} ∈ En, let T denote the opera-
tor which shifts sequence cyclically to the right by one place, that is Tx =
(xn−1,x0, . . .xn−2), and let T0x = x, Ti+1x = T (Tix) for positive integer i ≥ 1.
Given any positive integer k, a sequence x0k = (x0, x1, . . ., xn−1, 0, 0, . . ., 0) is
obtained by appending k zeros to the right-hand of x.

Throughout this paper, it is assumed that the partial inner product of x0LCZ

and y0LCZ is given by

〈
Ts(x0LCZ ), Tt(y0LCZ )

〉
l
=

⎧⎪⎪⎨⎪⎪⎩
s+l∑
i=0

x0LCZ

i (y0LCZ

i+s−t)
∗, s ≥ t

t+l∑
i=0

y0LCZ

i (x0LCZ

i+t−s)
∗, s < t

(2)

wi ≥ 0, i = 0, 1, · · ·, LCZ,
LCZ∑
i=0

wi = 1 and w = (w0, w1, · · ·, wLCZ ).

For x ∈ En, A,B ⊆ En, |A||B| > 0, let W (x) = {Tix|i = 0, 1, · · ·, LCZ},
W (A) = ∪x∈AW (x) and

F (A,B) :=
1

|A| |B|
∑
x∈A

∑
y∈B

LCZ∑
s=0

LCZ∑
t=0

∣∣〈Ts(x0LCZ ), Tt(y0LCZ )
〉∣∣2 wswt (3)

Lemma 1. For any sequence x ∈ En, and any integer d = 0, 1, . . ., n − 1, we
have ∑

y∈En

|APl(x, y; d)|2 =
{
lqn, 0 ≤ d ≤ n− l
(n− d)qn, n− l < d ≤ n− 1 (4)

Lemma 2. For any x ∈ En, A ⊆ En

F ({x}, En) = F (A,En) = F (En, En)

=
∑

|s−t|≤n−l
0≤s,t≤LCZ

lwswt +
∑

|s−t|>n−l
0≤s,t≤LCZ

(n− |s− t|)wswt (5)
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Lemma 3. For C ⊆ En

F (C,C) ≥ F (En, En) =
∑

|s−t|≤n−l
0≤s,t≤LCZ

lwswt +
∑

|s−t|>n−l
0≤s,t≤LCZ

(n− |s− t|)wswt (6)

3 Lower Bounds on Partial Aperiodic Correlation of LCZ
Complex Roots-of-Unity Sequences

Let C be a set of M complex roots-of unity sequences of length n, APlA denotes
maximum partial aperiodic autocorrelation sidelobe, APlC , denotes maximum
partial aperiodic crosscorrelation value, APlM = max{APlA, AP lC}, LCZ de-
notes low correlation zone, l denotes subsequence length. Then we can derive the
partial aperiodic correlation bounds of LCZ complex roots-of-unity sequences in
this section.

Theorem 1. For any C ⊆ En, M = |C| > 0, we have

1
M

(1 −
LCZ∑
s=0

w2
s)APl2A + (1− 1

M
)APl2C ≥ R(n, l, LCZ)− l2

M

LCZ∑
s=0

w2
s (7)

(1− 1
M

LCZ∑
s=0

w2
s)APl

2
M ≥ R(n, l, LCZ)− l2

M

LCZ∑
s=0

w2
s (8)

where

R(n, l, LCZ) =
∑

|s−t|≤n−l
0≤s,t≤LCZ

lwswt +
∑

|s−t|>n−l
0≤s,t≤LCZ

(n− |s− t|)wswt (9)

Proof. By lemma 2 and 3, we have

M2F (C,C) =
∑
x∈C

LCZ∑
s=0

∣∣〈Ts(x0LCZ ), Ts(x0LCZ )
〉

l

∣∣2 wsws

+
∑
x∈C

LCZ∑
s,t=0
s �=t

∣∣〈Ts(x0LCZ ), Tt(x0LCZ )
〉

l

∣∣2 wswt

+
∑

x,y∈C
x �=y

LCZ∑
s,t=0

∣∣〈Ts(x0LCZ ), Tt(y0LCZ )
〉

l

∣∣2 wswt

≤Ml2
LCZ∑
s=0

w2
s +MAPl2A(1−

LCZ∑
s=0

w2
s) +M(M − 1)APl2C

where

1 =
LCZ∑
s,t=0

wswt =
LCZ∑
s=0

w2
s +

LCZ∑
s,t=0;s�=t

wswt
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Noting APlM = max{APlA, AP lC}, the inequality (8) follows immediately from
inequality (7). Q.E.D.

Based on Theorem 1, we can derive some useful results as follows:

Corollary 1. For C ⊆ En, any integer 0 ≤ L ≤ LCZ , we have

(1− 1
L+ 1

)APl2A + (M − 1)APl2C

≥ M

L+ 1

[
2nl − l2 − n2 + n+ nL− 1

3
(L2 + 2L)

]
− l2

L+ 1
(10)

APl2M ≥
M
[
3(2nl− l2 − n2 + n+ nL)− (L2 + 2L)

]
− 3l2

3(ML+M − 1)
(11)

Proof. Put the weight vector w = (w0, w1, · · · , wLCZ ), where

ws =
{

1
L+1 , 0 ≤ s ≤ L

0, L < s ≤ LCZ

then
∑LCZ

s=0 w2
s = 1

L+1 , and R(n, l, LCZ)can be partitioned into 4 parts:

1. s ≥ t, s− t ≤ n− l, then t ≤ s ≤ n− l + t

R(n, l, LCZ)1 =
1

(L+ 1)2

L∑
t=0

l(n− l + 1) (12)

2. s ≥ t, s− t > n− l, then n− l + t < s ≤ L

R(n, l, LCZ)2 =
1

(L + 1)2

L∑
t=0

[
1
2
(L− n+ l − t)(n+ t− L+ l − 1)

]
(13)

3. s < t, t− s ≤ n− l, then t− n+ l ≤ s < t

R(n, l, LCZ)3 =
1

(L+ 1)2

L∑
t=0

l(n− l) (14)

4. s < t, t− s > n− l, then 0 ≤ s < t− n+ l

R(n, l, LCZ)4 =
1

(L+ 1)2

L∑
t=0

[
1
2
(t− n+ l)(n− t+ l − 1)

]
(15)

By Eqn.(12), (13), (14) and (15), we have

R(n, l, LCZ) =
∑

|s−t|≤n−l
0≤s,t≤LCZ

lwswt +
∑

|s−t|>n−l
0≤s,t≤LCZ

(n− |s− t|)wswt

=
1

(L+ 1)2

L∑
t=0

[
t−n+l−1∑

s=0

[n− (t− s)] +
t−1∑

t−n+l

l +
n−l+t∑

t

l +
L∑

n−l+t+1

[n− (s− t)]
]

=
1

L+ 1

[
2nl− l2 − n2 + n+ nL− 1

3
(L2 + 2L)

]
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Noting APlM = max{APlA, AP lC}, the inequality (11) follows immediately
from (10). Q.E.D.

Corollary 2. For C ⊆ En, any integer 0 ≤ L ≤ LCZ , we have

2(1− 4−L)APl2A + 3(M − 1)APl2C ≥ 3MR(n, l, LCZ)− (1 + 2× 4−L)l2 (16)

APl2M ≥
3MR(n, l, LCZ)− (1 + 2× 4−L)l2

2(1− 4−L) + 3(M − 1)
(17)

R(n, l, LCZ) = n+ 2−L(2L− 2n+ 2l)− 4× 2l−n−L

+ 4−L(l − n+ 2L+ 4)− 1
3
(1− 4−L)(21+l−n + 21+n−l) (18)

Proof. Let the weight vector w = (w0, w1, · · · , wLCZ ), where

ws =

⎧⎨⎩
2−L, s = 0
2−s, 1 ≤ s ≤ L
0, L < s ≤ LCZ

Thus, we have,
LCZ∑
s=0

w2
s =

1
3

+
2
3
4−L

where R(n, l, LCZ) can be partitioned into 4 parts:

1. s = 0, t = 0:
R(n, l, LCZ)1 = l4−L (19)

2. s = 0, t 
= 0:

R(n, l, LCZ)2 = l2−L − 2−L−n+l+1 + (L+ 2− n)4−L (20)

3. s 
= 0, t = 0:

R(n, l, LCZ)3 = l2−L − 2−L−n+l+1 + (L+ 2− n)4−L (21)

4. s 
= 0, t 
= 0:

R(n, l, LCZ)4 = n+ 2−L(2L− 2n+ 2l)− 4× 2l−n−L

+ 4−L(l − n+ 2L+ 4)− 1
3
(1 − 4−L)(2l−n+1 + 2n−l+1) (22)

By Eqn.(19), (20), (21) and (22), the Eqn. (18) can be derived. By Theorem
1 and (18), the inequality (16) and (17) can be proved. Q.E.D.
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4 Lower Bounds on Partial Aperiodic Correlation of
Normal Complex Roots-of-Unity Sequences

Because the normal correlation operation can be considered as a special case
of the correlation operation for LCZ sequences for LCZ = n − 1, based on the
general results presented in Section 3, lower bounds for normal complex roots-
of-unity sequences can also be established.

Let l = n in corollary 1 and 2, we have the following lower bounds on aperiodic
correlation of LCZ complex roots-of-unity sequences obtained by Peng and Fan [6].

3LAPl2A + 3(L+ 1)(M − 1)APl2C ≥ 3Mn+ 3MnL−ML2 − 2ML− 3n2 (23)

APl2M ≥
3Mn+ 3MnL−ML2 − 2ML− 3n2

3(ML+M − 1)
(24)

2(4L − 1)APl2A + 3(M − 1)4LAPl2C

≥ (3Mn− n2 − 4M)4L + 6(L− 2)2LM + 6ML+ 16M − 2n2 (25)

The bounds (23) and (24) follow from corollary 1, and bound (25) follows from
corollary 2, respectively. Because the complex roots-of-unity sequences include
the binary sequences as special cases, and generalized orthogonality (GO) se-
quences include pseudonoise sequences as special cases, all the previous aperiodic
sequence bounds such as Sarwate bounds, Welch bounds, Levenshtein bounds,
Tang-Fan bounds and Peng-Fan bounds can be considered as special cases of
the above results.

Besides, we have the following lower bounds on partial aperiodic correlation
of normal complex roots-of-unity sequences:

Corollary 3. For any C ⊆ En, M = |C| > 0, we have

(n− 1)APl2A + n(M − 1)APl2C ≥ 2Mnl−Ml2 − 1
3
(Mn2 −M)− l2 (26)

APl2M ≥
6Mnl− 3Ml2 −Mn2 +M − 3l2

3(Mn− 1)
(27)

Corollary 4. For any C ⊆ En, M = |C| > 0, we have

2(1−4−n+1)APl2A +3(M −1)APl2C ≥ 3MR(n, n−1)− (1+2×4−n+1)n2 (28)

APl2M ≥
3MR(n, n− 1)− (1 + 2× 4−n+1)n2

2(1− 4−n+1) + 3(M − 1)
(29)

R(n, n−1) = n+2−n+2(n−1)−4×2−n+1 +4−n+1(2n+2)− 4
3
(1−4−n+1) (30)

Based on the lower bounds on partial aperiodic correlation of normal complex
roots-of-unity sequences, let l = n in corollary 3 and 4 then we have the lower
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bounds on aperiodic correlation of normal complex roots-of-unity sequences ob-
tained by Peng and Fan[6].

3(n− 1)
2Mn2 +M − 3n2

APl2A +
3n(M − 1)

2Mn2 +M − 3n2
APl2C ≥ 1 (31)

APl2M ≥
2Mn2 +M − 3n2

3(Mn− 1)
(32)

2(4n−1 − 1)APl2A + 3(M − 1)4n−1APl2C

≥ (3Mn− n2 − 4M)4n−1 + 3(n− 3)M2n + (6Mn− 2n2 + 10M) (33)

The bounds (31) and (32) follow from corollary 3, and bound (33) follows from
corollary 4 respectively. Because the complex roots-of-unity sequences include
the binary sequences as special cases, the lower bounds derived here are ap-
propriate to the normal pseudonoise sequences such as m-sequence, Kassami
sequence, Gold sequence and so on.

5 Conclusion

Sequence sets having low absolute values of nontrivial partial correlations are
important in CDMA system as well as in ranging, channel estimation and syn-
chronization applications. The lower bounds on the partial correlation are impor-
tant criteria on the selection and design of good sequence sets in CDMA systems
and other applications. In this paper, generalized lower bounds on the partial
aperiodic correlations of both GO sequences and normal complex roots-of-unity
sequences are established, which discloses theoretical relationship among the se-
quence length, subsequence length, sequence set size, maximum partial aperiodic
autocorrelation sidelobe value, maximum partial aperiodic crosscorrelation value
and low correlation zone. Because the complex roots-of-unity sequences include
binary sequences as special cases, and GO sequences include pseudonoise se-
quences as special cases, all the previous aperiodic correlation bounds such as
Peng-Fan bounds, Sarwate bounds, Welch bounds and Levenshtein bounds can
be considered as special cases of the bounds derived in this paper.
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Chip-Asynchronous Version of Welch Bound:

Gaussian Pulse Improves BER Performance
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Abstract. We give a quadratic form expression of the mean squared
multiple-access interference (MAI) averaged over relative time delays
for chip-asynchronous DS/CDMA systems. A lower bound on the mean
squared MAI is referred to as chip-asynchronous version of Welch bound,
which depends on chip pulse shapes. Real analysis tells us that a pair of
rectangular and sinc functions is one of Fourier transform and its inverse
Fourier transform and vice versa. On the other hand, Gaussian pulses
have the self-duality property. Gaussian chip pulses sacrifice inter-symbol
interference, however, they give smaller mean squared MAI, as well as
lower bit error rate, than the conventional Nyquist pulses.

Keywords: Welch bound equality (WBE) sequence, total squared cor-
relation (TSC), pulse shaping filter, asynchronous DS/CDMA system.

1 Introduction

Constructing a spread spectrum (SS) code set minimizing cross-correlation val-
ues between any two codes in the set is a goal of SS code design for direct se-
quence/code division multiple access (DS/CDMA) communications. It is also
an important and interesting problem to give a tight lower bound of cross-
correlations. The Welch bound is a lower bound of such cross-correlation
values [1].

For symbol-synchronous DS/CDMA systems, cross-correlations reduce to in-
ner products among the code set. The optimal SS codes are the set of orthogonal
sequences when the number of users K is less than or equal to the code length
N . Thus, the overloaded system (K > N) attracts many researchers’ atten-
tion. An SS code set achieving the Welch’s lower bound is called Welch bound
equality (WBE) sequences [2,3,4,5]. For real- and complex-valued SS codes, the
Welch bound is always achievable but this is not the case for binary antipodal
code sets [6]. Recently, Karystinos and Pados gave a new lower bound for binary
codes [6, 7].
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For asynchronous systems, we have three correlation functions, i.e., periodic
(or, even), odd, and aperiodic correlation functions. (Odd correlation is defined
only if data symbol is antipodal binary. If data symbol is polyphase, odd cor-
relation is generalized to polyphase correlations [3].) Welch gave lower bounds
on periodic and aperiodic correlations as well as a bound on inner products.
A lower bound on odd correlation functions was given in [8]. Pursley [9] ex-
ploited an aperiodic cross-correlation function and gave a useful expression of
signal to interference ratio (SIR) parameter averaged over all possible time de-
lays. Note that cross-correlation values depend on a relative time delay between
the two sequences. Recently, Ulukus and Yates [10] defined a quantity to mea-
sure the user capacity of a CDMA system. The quantity is called the total
squared asynchronous correlation (TSAC) and depends on the users’ delay pro-
file. A lower bound on TSAC was given in [10] based on the assumption that the
system is symbol-asynchronous but chip-synchronous. It must be stressed that
there are two types asynchronisms: chip-synchronous and chip-asynchronous and
that characteristics of cross-correlation functions are different between the two
systems.

For chip-asynchronous (i.e., completely asynchronous) DS/CDMA systems,
the bit error rate (BER) performance depends on pulse shaping filters as well
as signature sequences. It was found in [11] and proven in [12, 13, 14] that SS
codes generated by a Markov chain have less BER than linear feedback shift
register (LFSR) sequences, such as Gold and Kasami codes. One of criticisms to
this surprising fact was that rectangular chip waveforms are wrongly assumed,
because they have infinite band-widths and are not used in practical systems.
However, it was shown that Markov codes also reduce the BER when pulse
shapes are the band-limited root raised cosine pulses [15, 16].

Pulse shape optimization was thoroughly discussed in [17], where spreading
sequences are modeled as independent and identically distributed (i.i.d.) random
variables. The pulses in [17] were assumed to have zero inter-symbol interference
(ISI). However, reduction of multiple-access interference (MAI) is more impor-
tant than ISI-free property because BER is mainly increased by MAI.

In this paper, we evaluated the mean squared MAI averaged over uniformly
distributed relative time delays. The mean squared MAI is given in a positive
definite quadratic form, which defines a lower bound. Such a lower bound is
referred to as “chip-asynchronous version of Welch bound”, which depends on
the chip pulse shape. As a related work, the quantity called continuous-time
equivalent of total squared correlation (CTE-TSC) was studied by Cho and
Gao [18]. They gave a lower bound on CTE-TSC by assuming that signature
waveforms are completely band-limited signals without excess bandwidth, while
we assume signature waveforms are produced by code sequences and pulse shap-
ing filters having unavoidable excess bandwidth. This paper examines Gaussian
pulse shaping filters [19]. Gaussian pulse has the self-duality property, that is,
it has the same expression in both time and frequency domains [20]. Gaus-
sian chip pulse sacrifices ISI but it has lower BER than root raised cosine
pulses.
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2 The Welch Bound

Denote a set of SS codes by

X = {x(1), . . . ,x(K)}, x(k) = (x(k)
1 , · · · , x(k)

N )T , (1)

where N is the code length, also referred to as the spreading factor, and K the
family size. It is assumed that SS codes are complex-valued with

∑N
n=1

∣∣x(k)
n

∣∣2 =
N . Let data and chip durations be Td and Tc = Td/N . SS code and data signals
and for i-th user are, respectively,

x(i)(t) =
N−1∑
n=0

x(i)
n δ(t− nTc), (2)

d(i)(t) =
∞∑

p=−∞
d(i)

p δ(t− pTd). (3)

Aperiodic cross-correlation is defined as

x(i)(t) ∗ x(j)(−t) =
N−1∑

k=1−N

c
(i,j)
k δ(t− kTc), (4)

where c(i,j)k =
∑N−1−k

n=0 x
(i)
n x

(j)
n+k and z̄ denotes the complex conjugate of z. The

SS code set X is required to be designed so that |c(i,j)k | is as small as possible
for every pair of users and delays. The Welch bound on aperiodic correlations is
known as [3]

Theorem 1 (Welch). Let Sa = {(i, i, k)|1 ≤ i ≤ K, k = ±1,±2, . . . ,±N − 1}
denote the set of variables representing out-of-phase auto-correlations and Sc =
{(i, j, k)|i 
= j, 1−N ≤ k ≤ N−1} the one representing cross-correlations. Then

max
(i,j,k)∈Sa∪Sc

|c(i,j)k | ≥
√

N2(K − 1)
K(2N − 1)− 1

. (5)

The right hand side of (5) gives chip-synchronous version of Welch bound.
Roughly speaking, this bound is

√
N/2 asymptotically.

The Welch bound gives a lower bound of maximum correlation values among
all cross-correlations and out-of-phase auto-correlations. Welch bound equality
(WBE) signal set is optimum in the sense that (5) holds with equality. This is
true when the system is chip-synchronous. However, in chip-asynchronous sys-
tems, time delay takes continuous values and correlation function of non-integer
time delay, say � + ε, is an intermediate value between c

(i,j)
� and c

(i,j)
�+1 . There-

fore multiple access interference (MAI) depends on pulse shapes. The maximum
value of correlation functions is bounded by (5). However, such maximum value
infrequently occurs since it is rare that the relative time delay takes an integer
value in the chip time. Hence, it seems more reasonable to consider a bound on
the time-averaged MAI with a weight function given by the chip pulse shape.
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3 Chip-Asynchronous DS/CDMA Systems

Let us consider a chip-asynchronous DS/CDMA system with pulse shaping
filters. Denote the transmitter’s pulse shape by g(t) with

∫∞
−∞ |g(t)|

2dt = 1.
The k-th user’s propagation delay is 0 ≤ tk < Td. The received signal is
given by

r(t) =
K∑

j=1

d(j)(t) ∗ x(j)(t) ∗ g(t) ∗ δ(t− tj) + n0(t), (6)

where an asterisk sign denotes a convolution and n0(t) is an additive white Gaus-
sian noise with two-sided spectral density σ2

N . A single-user receiver consists of
a chip-matched filter and a code-matched filter. Note that it is often supposed
that chip-matched filter is given by g(−t) but it is reported that using other
pulse shapes than g(−t) can suppress the MAI [21,22]. Hence the chip-matched
filter is denoted by h(t), normalized as

∫∞
−∞ |h(t)|2dt = 1, while code-matched

filter is denoted by x(i)(−t).
Output of the i-th user’s receiver is z(i)(t) = r(t) ∗ h(t) ∗ x(i)(−t) ∗ δ(t + ti).

The multiple access interference is defined as

MAI(i,j)(t) = x(j)(t) ∗ g(t) ∗ x(i)(−t) ∗ h(t) for j 
= i. (7)

Let us consider, without loss of generality, the correlator output of the 0-th bit:

z(i)(0) =d(i)
0 ·MAI(i,i)(0) +

∑
p�=0

d(i)
p ·MAI(i,i)(−pTd)

+
K∑

j=1
j �=i

∞∑
p=−∞

d(j)
p ·MAI(i,j)(tij − pTd) + η(i)(0), (8)

where tij = ti−tj denotes the relative time delay between i-th and j-th users’ sig-
nal. The first, second, third, and fourth term of the right hand side of (8) are the
signal component, inter-symbol interference (ISI), MAI, and noise component,
respectively. The transmitted data symbol is estimated as d̂(i)

0 = sgn(z(i)(0)).
Calculation of the bit error rate (BER) of a CDMA receiver is a difficult

task in general because it includes a multiple integration of Q-function with all
unknown parameters [23,24]. The standard Gaussian approximation (SGA) is a
widely accepted way to approximate the BER, where the MAI terms in (8) is
regarded as a Gaussian random vector. Such an approximation is based on the
central limit theorem and therefore it is necessary that the number of users K
is sufficiently large. The bit error rate based on the SGA is

P̃ (i)
e = Q

⎛⎝√√√√ |MAI(i,i)(0)|2/N
σ2

N + {σ(i,i)
ISI }2 +

∑
j �=i{σ

(i,j)
MAI}2

⎞⎠ , (9)
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where Q(x) = 1
2π

∫∞
x

exp(−u2/2)du and

σ2
N =

N0

2N

N−1∑
k=1−N

[
x(i) # x(i)

]
k
· hR ∗ hR(kTc), (10)

{
σ

(i,i)
ISI

}2 =
1
N

∑
p�=0

∣∣∣MAI(i,i)(−pTd)
∣∣∣2 , (11)

{
σ

(i,j)
MAI

}2 =VarD

[
1√
N

∞∑
p=−∞

d(j)
p MAI(i,j)(tij − pTd)

]

=
1
N

∞∑
p=−∞

∣∣∣MAI(i,j)(tij − pTd)
∣∣∣2, (12)

where VarD[·] shows the variance of a random variable with respect to data
symbols assumed to be independent and identically distributed (i.i.d.) random
variables.

Let us minimize the total amount of (12) over 1 ≤ i, j ≤ K because the bit
error rate P̃

(i)
e should be suppressed for every users. This quantity is used to

measure the system performance of multiuser detection (MUD) receivers [10].
For a single user receiver, the relative time delay tij (j 
= i) is supposed to be
unknown and uniformly distributed in [0, Td]. Hence we consider

K∑
i=1

K∑
j=1

1
Td

∫ Td

0

{σ(i,j)
MAI}2dtij . (13)

Note that σ(i,i)
MAI gives auto-correlation function of i-th user’s spreading signal,

where timing error is denoted by tii. We get

Lemma 1. Let u0 = 2NK, u = (u1, . . . , uN−1)T and v = (v1, . . . , vN−1)T are
vectors comprised of real and imaginary parts of auto-correlation functions of
SS codes such that uk =

∑K
i=1[c

(i,i)
k + c

(i,i)
−k ] and vk =

√
−1
∑K

i=1[c
(i,i)
k − c

(i,i)
−k ],

respectively. Then, the mean squared MAI averaged over time delay is expressed
in a positive definite quadratic form as

K∑
i=1

K∑
j=1

1
Td

∫ Td

0

{σ(i,j)
MAI}2dtij

=
1

NTd

{
(u0

2 )2a0 + u0b
T u + 1

2uT A(c)u + 1
2vT A(s)v

}
, (14)

where A(c) and A(s) are (N − 1) by (N − 1) matrices and b = (b1, b2, . . . bN−1)
with
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a0 =g ∗ g ∗ h ∗ h(0), (15)
bn =g ∗ g ∗ h ∗ h(nTc), (16)

A(c)
m,n =g ∗ g ∗ h ∗ h((n+m)Tc)

+ g ∗ g ∗ h ∗ h((n−m)Tc). (17)

A(s)
m,n =g ∗ g ∗ h ∗ h((n+m)Tc)

− g ∗ g ∗ h ∗ h((n−m)Tc). (18)

Proof : From (4), (7) and (12), we have

1
Td

∫ Td

0

{σ(i,j)
MAI} dtij

=
1

NTd

∞∑
p=−∞

∫ −pTd+Td

−pTd

|MAI(i,j)(tij)|2 dtij

=
1

NTd

∫ ∞

−∞
|MAI(i,j)(τ)|2 dτ

=
1

NTd
x(i)(t) ∗ x(i)(−t) ∗ x(j)(t) ∗ x(j)(−t)

∗ g(t) ∗ g(−t) ∗ h(t) ∗ h(−t)
∣∣∣
t=0

=
1

NTd

N−1∑
k=1−N

c
(i,i)
k

N−1∑
�=1−N

c
(j,j)
� g ∗ g ∗ h ∗ h((k − �)Tc). (19)

Substituting
∑K

i=1 c
(i,i)
k = uk−

√−1vk

2 into the summation of (19) from i = 1 to

K and j = 1 to K together with the relation c
(i,i)
−k = c

(i,i)
k gives the quadratic

form (14). �

The coefficient matrix A(c) and A(s) are positive definite. Therefore, Lemma 1
immediately gives a lower bound on (13).

Theorem 2. The mean squared MAI averaged over time delay is bounded from
below as

K∑
i=1

K∑
j=1

1
Td

∫ Td

0

{σ(i,j)
MAI}2dtij ≥

K2

Tc
(a0 − 2bT {A(c)}−1b). (20)

Equality holds if and only if u = −u0{A(c)}−1b and v = 0. We refer the right
hand side of (20) to as “asynchronous version of Welch bound.”

It is observed in [3] that any WBE signal set should satisfy

u = v = 0. (21)
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In this case, the mean squared MAI, Eq. (14) is equal to a0K
2/Tc. Theorem

2 implies that we can reduce the mean squared MAI by 2bT {A(c)}−1b. Let us
define the reduction ratio as

2bT {A(c)}−1b

a0
. (22)

4 Discussions

4.1 Rectangular Pulse Case

A rectangular pulse is given by

grec(t) =

{
1/
√
Tc for 0 ≤ t ≤ Tc.

0 otherwise,
(23)

Pursley defined the SIR parameter for a rectangular pulse by [9], [3, 25]

2
3
μ(i)(0) +

1
3
μ(i)(1), (24)

where

μ(i)(n) def=
K∑

j=1
j �=i

N−1−n∑
k=1−N

c
(i,j)
k c

(i,j)
k+n. (25)

The second term of (24) is very close to zero for Gold and Kasami codes. Using
SS codes satisfying (5) with equality gives

μ(i)(0) = (K − 1)N2
(
1− 2(N−1)

K(2N−1)−1

)
. (26)

On the other hand, using i.i.d. codes gives

EX
[
μ(i)(0)

]
= (K − 1)N2, (27)

which means SIR parameter of WBE signal set does not have significant differ-
ence from that of random i.i.d. codes and is slightly less than 2

3 (K − 1)N2 [3].
However, it follows from (24) that minimization of μ(i)(0) does not mean min-

imization of the SIR parameter. Optimization of (24) is actually done by making
μ(i)(0) more than (26) and making μ(i)(1) negative. This approach is considered
as variance reduction method and SS code set provide us antithetic variates [26].
For a rectangular pulse, we have a0 = 2/3, brec = (1/6, 0, . . . , 0)T and

A(c)
rec = A(s)

rec =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2
3

1
6 0 · · · 0

1
6

2
3

1
6

. . .
...

0 1
6

. . . . . . 0
...

. . .
. . . 2

3
1
6

0 · · · 0 1
6

2
3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (28)
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Hence, Theorem 2 gives the mean squared MAI for a rectangular pulse as

K∑
i=1

K∑
j=1

1
Td

∫ Td

0

{σ(i,j)
MAI}2dtij >

K2

Tc

(
2
3
− 2−

√
3

3

)
=
K2

Tc

1√
3
, (29)

which suggests that we can reduce SIR parameter to 1√
3
(K−1)N2. The reduction

ratio for rectangular pulse is (2−
√

3)/2 = 0.134. Variables μ(i)(0) and μ(i)(1) for
Kasami and Gold sequences are shown in Table 1. In case of i.i.d. codes, the ex-
pectation value is listed, whereas optimum codes are given by u = −u0{A(c)}−1b
and v = 0.

Table 1. Mean squared of MAI for LFSR codes, where code length is N = 31 for Gold
codes and N = 63 for Kasami codes

Gold Kasami (small set) i.i.d. optimum

μ(i)(0) 0.970674 1.017601 1 2/
√

3

μ(i)(1) -0.003153 0.002176 0 −1/
√

3

Such an optimization in terms of the SIR parameter, however, has a criti-
cism that the assumption of rectangular chip waveforms is improper: rectangular
waveform has infinite band-widths and are not used in practical systems. In the
next subsection, a completely band-limited case is considered.

4.2 Sinc Pulse Case

If the chip waveforms G(ω) and H(ω) have flat spectra over the frequency band
ω ∈ [−π/Tc : π/Tc], their expressions in time domain are sinc (or, sampling)
functions. In this case, the coefficient vector b becomes zero vector and matrices
A(c) and A(s) turn into identity matrices. Hence, the mean squared MAI for
sinc pulse is

1
NTd

((u0
2 )2 + 1

2‖u‖2 + 1
2‖v‖2) (30)

=
1

NTd
((u0

2 )2 + 2
∑K

k=1

∣∣∣∑N
i=1 c

(i,i)
k

∣∣∣2) ≥ K2

Tc
.

Now we can give a brief proof of Theorem 1. Using the Pursley-Sarwate’s iden-

tity [27],
∑N−1

k=1−N c
(i,j)
k c

(i,j)
k+� =

∑N−1
k=1−N c

(i,i)
k c

(j,j)
k+� , gives

K∑
i=1

K∑
j=1

N−1∑
k=1−N

∣∣c(i,j)k

∣∣2 = K2N2 +
∑
k �=0

∣∣∣ K∑
i=1

c
(i,i)
k

∣∣∣2. (31)
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It is easy to see
∑K

i=1

∑K
j=1

∑N−1
k=1−N

∣∣c(i,j)k

∣∣2 = KN2 +
∑

(i,j,k)∈Sa∪Sc

∣∣c(i,j)k

∣∣2.
Thus,

max
(i,j,k)∈Sa∪Sc

∣∣c(i,j)k

∣∣ ≥√ N2(K − 1)
K(2N − 1)− 1

(32)

Eq. (31) is identical to the left hand side of (30) because we have ‖u‖2+‖v‖2 =
‖u +

√
−1v‖2 =

∑N−1
k=1 |2

∑K
i=1 c

(i,i)
k |2.

4.3 Root Raised Cosine Pulses

Completely band-limited pulses have infinite impulse responses and do not sat-
isfy the causality of the filter. Hence a time truncated version of the band-
limited pulse is used in actual situations. For practical communication systems,
root raised-cosine pulse with excess bandwidth β > 0 is frequently employed
for band-limited DS/CDMA systems. In practical systems, excess bandwidth is
typically β = 0.22. The convolution of g(t) and h(t) becomes a raised-cosine
waveform, i.e.

g ∗ h(t) =
sin( πt

Tc
)

πt

cos(πβt
Tc

)

1− 4( βt
Tc

)2
, (33)

where β is also called the roll-off factor. Then

g ∗ g ∗ h ∗ h(kTc) =

⎧⎪⎨⎪⎩
1− β/4 if k = 0
(−1)k+1 · β/8 if k = ±1/β
sin(kβπ)
4πkTc

· (−1)k+1

1−(kβ)2 otherwise.
(34)

Optimum Markovian SS codes for RRC pulse shaping with different roll-off fac-
tors are discussed in [16] and [15].

Recently, Beaulieu et. al proposed a “better than” Nyquist pulse, which has a
good eye-diagram and is expected to reduce timing jitter [28]. These pulses are
of practical importance but we analyze the following pulse shaping filter, which
is optimum in terms of BER [24].

|Gopt(ω)|2 =

⎧⎪⎨⎪⎩
Tc for |ω| < (1− β)π/Tc

0 for |ω| > (1 + β)π/Tc

Tc/2 otherwise
(35)

Note that such a sharp power spectral density function is difficult to realize.
We use this pulse because it gives a lower bound of correlation values for a
given excess bandwidth. The impulse response of |Gopt(ω)|2 is g(t) ∗ g(−t) =
sinc(πt/Tc) cos(βπt/Tc). We have

g ∗ g ∗ h ∗ h(nTc)

=

{
Tc(1− β

2 ) for n = 0
(1−β)Tc

2 sinc((1− β)nπ) for n = ±1,±2, . . ..
(36)
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The amount of reduction 2bT {A(c)}−1b and the reduction ratio 2bT {A(c)}−1

b/a0 for Gopt(ω) are illustrated in Fig. 1, which shows the mean squared MAI
can be reduced 5% when β = 0.5 and 3 % when β = 0.25.
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Fig. 1. Reduction of the mean squared MAI by optimization of autocorrelation of SS
codes: A pulse shaping filters with excess bandwidth β is used

4.4 Gaussian Pulse Case

If pulse shaping filter is completely and ideally band-limited with flat spectrum,
WBE sequence is the best in terms of TSC. However, as stated above, pulse
shaping filters in practical systems employs nonzero excess bandwidth: typically
it is β = 0.22. For RRC pulses, reduction ratio is only approximately 3%. In
order to enhance the variance reduction effect, function of g ∗ g ∗ h ∗ h(k · Tc) for
k 
= 0 should take large value.

In this paper, we introduce a Gaussian pulse, which has nonzero inter-symbol
interference (ISI). Gaussian pulses have the self-duality property: they have the
same expression in both time and frequency domains. Gaussian chip pulses sac-
rifice ISI, however, they give lower bit error rate than the conventional RRC
pulses. Let us define a Gaussian pulse with a parameter α > 0 as

gα(t) =
√

α

Tc
gauss

(
αt

Tc

)
, (37)

where gauss(x) = 4
√

2 exp(−πx2). The energy of this pulse is concentrated with
92.4% both in time domain t ∈ [−Tc/2 : Tc/2] and in frequency domain ω ∈
[−π/Tc : π/Tc] when α = 1. We obtain
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gα ∗ gα(t) =
1
4
√

2
gauss(αt/

√
2Tc), (38)

gα ∗ gα ∗ gα ∗ gα(t) =
Tc

4
√

2α
gauss(αt/2Tc). (39)

Bit error probabilities for Gaussian and root raised cosine pulse are illustrated
in Fig. 2. Simulation results shows the superiority of Gaussian pulses.
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Fig. 2. Bit error rates of a chip-asynchronous CDMA system with spreading factor
N = 127, where ideal sinc pulse and Gaussian pulse with α = 1 are examined

Finally, we would like to emphasize that although chip waveform is often as-
sumed to be band-limited, time-truncation is necessary for pulse shaping filter to
be realized. Hence, the waveform after truncation is not band-limited in a strict
sense. One can find a better solution to a problem on time-limitedness and band-
limitedness in [29], i.e. prolate spheroidal wave function (PSWF). Applications
of PSWF to CDMA and ultra wideband communications were given [30,31,32].

5 Concluding Remarks

The mean squared MAI for chip-asynchronous (completely asynchronous)
DS/CDMA systems was expressed in a positive definite quadratic form, which
gives a lower bound. This lower bound is referred to as “chip-asynchronous ver-
sion of Welch bound” and is identical to the chip-synchronous one if the chip
pulse is the ideal sinc function. However, using a chip pulse having excess band-
width β > 0 makes the WBE sequences not optimum, which implies that we
can reduce mean squared MAI. Moreover, we examined a Gaussian pulse as an
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example of nonzero-ISI pulses. Simulation results show Gaussian pulse sacrifices
the ISI but it improves BER performance.
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Abstract. The notion of resilient function has been recently weakened
to match more properly the features required for Boolean functions used
in stream ciphers. We introduce and we study an alternate notion of
almost resilient function. We show that it corresponds more closely to
the requirements that make the cipher more resistant to precise attacks.

Introduction

The Boolean functions defined on the vector space Fn
2 of binary vectors of a given

length n are used in the pseudo-random generators of stream ciphers. They play
a central role in their security. The generation of the keystream generally consists
of a linear part, producing a sequence with a large period, usually composed of
one or several LFSR’s, and of a nonlinear combining or filtering function f which
produces the output, given the state of the linear part. In the combiner generator
model, the outputs to several Linear Feedback Shift Registers are combined by
a Boolean function giving, at each clock cycle, one bit of the pseudo-random
sequence. The combining function must be balanced for the good statistical
properties of the generated stream sequence. Moreover, to avoid a divide and
conquer attack (see e.g.[1,6,13,16]), the combining function must avoid low order
correlation . This is the reason why such a combining function is often chosen
with a rather high correlation immunity order.

There are two equivalent ways for characterising the correlation immunity:
either by means of the Walsh transform or by means of the sub-functions. Origi-
nally, an n-variable Boolean function f is said to be correlation immune of order
t (or t-th order correlation immune) if any sub-function deduced from f by fix-
ing at most t inputs has the same output distribution as f . On the other hand,
correlation immunity can be characterised by means of the Walsh transform
of f . Recall that, given an integer-valued (or real-valued, or complex-valued)
function f over F

n
2 , the Fourier transform of f is the function defined over Fn

2

by f̂(ω) =
∑

x∈Fn
2
f(x)(−1)ω·x. The Walsh transform of a Boolean function f

is by definition the Fourier transform of the sign function χf (x) = (−1)f(x):
χ̂f (ω) =

∑
x∈Fn

2
(−1)f(x)+ω·x. A Boolean function f is said correlation immune

of order t if and only if the Walsh transform of f vanishes at all non zero vector
of Hamming weight at most t, cf. [17]. If f is moreover balanced, then f is said
to be t-resilient.

G. Gong et al. (Eds.): SETA 2006, LNCS 4086, pp. 364–375, 2006.
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Siegenthaler’s bound [16] states that the algebraic degree of an n-variable t-th
order correlation immune Boolean function is necessarily less than or equal to
n−t [16]. On the other hand, the nonlinearity of a t-th order correlation immune
Boolean function is necessarily less than or equal to 2n−1 − 2t if t > n

2 − 1 and
2n−1−2

n
2 −1−2t otherwise [5]. When the Boolean function is moreover balanced,

the upper bounds on its algebraic degree and its nonlinearity are lower. Indeed,
the algebraic degree is less than or equal to n − t − 1 and the nonlinearity is
upper bounded by 2n−1 − 2t+1 if n

2 − 1 < t < n− 1 and 2n−1 − 2
n
2 −1 − 2t+1 if

t ≤ n
2 − 1. Therefore, the correlation immunity criterion is not compatible with

an high algebraic degree (necessary to withstand Berlekamp-Massey attack) and
a high nonlinearity (necessary for avoiding attacks using linear approximation
of the function). Moreover, the recent algebraic attacks, e.g [7,8], highlighted
the need for having an high algebraic degree as well as an high algebraic immu-
nity so that stream ciphers can resist to these attacks. Now, there seems to be
some kind of contradiction for Boolean functions between having high correla-
tion immunity and optimum or nearly optimum algebraic immunity; also, much
attention having been given to algebraic immunity recently, several examples of
functions having optimum algebraic immunity could be found but no example
of correlation immune Boolean function with optimum algebraic immunity.

Fortunately, As observed in [11], strict correlation immunity is not absolutely
required. The work factor to reconstitute the sequences coming from several reg-
isters increases with the number of registers, and a strict correlation immunity
is necessary for small orders only. For higher orders, low non-zero correlations
are sufficient (the lower the order, the lower the allowed correlations). In [11],
the authors allow the restrictions to have output distributions slightly differing
from the distribution of the global function. We propose here an alternate way
of relaxing the constraint of correlation immunity. We allow the Walsh trans-
form to take low values for low orders instead of being null. We introduce the
concept of immunity profile of a Boolean function (Section 2, Definition 1). As
we shall see, both definitions go in the same direction, but with non-negligible
differences. In [11], the resiliency constraints have been relaxed by introducing
the notion of almost-resiliency, that amounts to saying that the values of the
Walsh transform is upper bounded on all vectors of weight lower than some
positive integer. The notion introduced here is slightly more general as we are
interested in the whole profile and in a way which sticks more precisely to the ef-
fective difficulty of the correlation attack. In Section 4, we study the relationship
between the immunity profile and the approach of almost resiliency introduced
by Kurosawa [11]. Moreover we wonder which immunity profile should have the
combining Boolean function to have a good resistance to fast correlation attacks
[1,6] (Section 3). Fast correlation attacks model the combining function as a
noise on a communication channel and the cryptanalysis as a decoding problem
of the keystream. There are then two ways of making hard the task of the crypt-
analyst: either to oblige him to have a very large amount of the keystream or
make the decoding step having a too high complexity. By considering these two
points of view separately, we find two possible types of immunity profile: with
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arguments taken from the information theory, we explain that the immunity pro-
file could increase in proportion to the square root of the order; next, considering
the complexities of the decoding procedures used in fast correlation attacks, we
see that the combining Boolean function could have an exponential immunity
profile. In subsection 3.2, we consider another class of ciphers that are iterated
ciphers (for example, self synchronizing stream ciphers). We explain that in this
kind of cipher, a round ciphering function with an exponential immunity profile
may provide a better resistance to linear cryptanalysis.We present in Sections
5 and 6 primary and secondary constructions of Boolean functions with such
immunity profiles.

1 Basic Notation

Let n be any positive integer. An n-variable Boolean function is a map from
F

n
2 to F2. We denote by Bn the set of all n variable Boolean functions. An n-

variable Boolean function f can be represented as a multivariate polynomial over
Fn

2 , called the algebraic normal form of f :

f(x1, . . . , xn) = a0 ⊕
n∑

i=1

aixi ⊕
∑

1≤i<j≤n

aijxixj ⊕ · · · ⊕ a12...nx1 · · ·xn

where the coefficients a0, ai, aij , . . ., a1...n are in Fn
2 . For cryptographic applica-

tions, there are several characteristics of Boolean functions that are interesting
to investigate. The support of an n-variable Boolean function f , denoted by
supp(f), is the set f−1(1) = {x ∈ Fn

2 | f(x) = 1}. The Hamming weight of
a Boolean function f , denoted by wt(f), is the cardinality of its support. An
n-variable Boolean function is said balanced if its truth table contains an equal
number of 0’s and 1’s. The algebraic degree, or simply degree, of a Boolean func-
tion f is by definition the degree of its algebraic normal form; it is denoted by
deg(f). Functions of degree at most one are called affine Boolean functions. The
Hamming distance between two functions f and g ∈ Bn, denoted by dist(f, g),
is defined as the cardinality of the set {x ∈ F

n
2 | f(x) 
= g(x)}. The nonlinear-

ity of a Boolean function, denoted by nl(f), is the Hamming distance to the
nearest affine function. It can be expressed by means of its Walsh transform:
nl(f) = 2n−1 − 1

2 maxω∈Fn
2
|χ̂f (ω)|.

2 ϕ-Correlation Immune Boolean Functions

Definition 1. Let n be any integer, n ≥ 2. Let ϕ be any integer valued mapping
over the set {0, . . . , n}. A Boolean function f over Fn

2 is said to be ϕ-correlation
immune if, for any vector ω ∈ F

n
2 ,

|χ̂f (ω)| ≤ ϕ(wt(ω))

where wt(ω) denotes the Hamming weight of vector ω which is by definition the
number of non zero components. If f is moreover balanced then f is said to be
ϕ-resilient. The integer mapping ϕ is called the immunity profile of f .
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This definition generalizes correlation immunity as t-th order correlation immune
Boolean functions are ϕ-correlation immune with ϕ(i) = 0 for 1 ≤ i ≤ t and
ϕ(i) = 2n for i ≥ t+ 1 or i = 0. Every Boolean function is clearly ϕ-correlation
immune for some ϕ. It is advisable to carefully choose the integer mapping ϕ. It
seems natural to consider increasing mappings ϕ, which take low values for low
orders.

Remark 1. Let f be a ϕ-correlation immune Boolean function for some integer
valued mapping ϕ over {0, . . . , n}. Because of Parseval’s identity that states that∑

ω∈Fn
2
χ̂f

2(ω) = 22n, the immunity profile ϕ of f must satisfy

n∑
l=0

(
n

l

)
ϕ2(l) ≥ 22n . (1)

Remark 2. The constraint on the algebraic degree stated by Siegenthaler’s bound
can be avoided for ϕ-correlation immune Boolean function if ϕ is carefully chosen.
More precise statements on algebraic degree of ϕ-correlation immune Boolean
functions shall be given in a full paper.

3 Which Immunity Profile?

3.1 Fast Correlation Attacks

Consider a stream generator constituted of n LFSR’s. Each of them is of dimen-
sion about k and they are combined by an n-variable Boolean function f .

The adversary observes a sample of N bits of the keystream and must recover
the initial state of each register. He may have several strategies. He can try to
get initial state of a single LFSR, of two at once, or more.

Fast correlation attacks model the nonlinear function (in all models) as a noise
on a communication channel with error probability p = 1

2−ε, and the cryptanal-
ysis as a decoding problem of length N , the amount of available keystream, and
of dimension at most k�, where � denotes the number of registers the adversary
decides to recover by this decoding process [1,6,13,14,15]. More precisely, the
nonlinear function is modelled by a Binary Symmetric Channel with transition
probability p given by

p =
1
2
− ε with ε =

ϕ(�)
2n+1

and ϕ(�) = max
u,wt(u)=�

|χ̂f (u)| , (2)

that corresponds to the maximum correlation between the output to f and the
combination of � LFSR states, by means of some �-variable Boolean function,
that the adversary decides to recover. When f is �-th order correlation immune
(this corresponds to the case where p = 1

2 ), the adversary has no chance to
recover the internal state of � registers while if f is not �-resilient the cryptanalyst
can theoretically recover the state of the registers. Obviously, from a practical
viewpoint, the success of the cryptanalyst will not be guaranteed either if he does
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not know enough keystream bits or if the complexity of the decoding procedure
is too high. We will consider separately each of the two situations. This will lead
us to different immunity profiles for the Boolean function combining the LFSR’s
(indeed, the limitation factor can come from the data or from the computation
power).

From an information theory point of view, the data at the disposal of the
adversary must be sufficient to recover the initial state of the registers and the
error vector, thus, the size N of the sample must satisfy the following inequality
(Shannon’s channel coding theorem, see e.g. [12]):

N ≥ k�

1− h2(p)
, (3)

where h2 : p �→ −p log2(p) − (1 − p) log2(1 − p) is the binary entropy function.

Whenever ε is small, one has 1−h2(p) ≈ 2
ln(2)

(
p− 1

2

)2

. Thus, the condition (3) of

success for the adversary becomes k� ≤ 2N
ln(2)

ϕ(�)2

22n+2 . Consequently, if the resiliency
profile ϕ satisfies at �

ϕ(�) ≤ 2n

√
2k ln(2)
N

·
√
� (4)

then, the adversary has no chance to decode if he has only N bits of the
keystream. In conclusion, get an �-resilient nonlinear function may not be the
best choice as this implies, among other drawbacks, that this function has higher
correlations of order ≥ �+ 1. Such a function may allow the adversary to apply
with greater success a decoding strategy to �+1 LFSR at once. Choosing a func-
tion with a resiliency profile that increases in proportion to the square root of the
order � makes the resistance to correlation attack more homogeneous. We stress
that this immunity profile is defined from the point of view of information theory
independently from the complexity of the decoding procedure. Because of (1),
there could exist Boolean functions whose immunity profile satisfies inequality
(4) only if, for fixed N and k, n satisfies n2n ≥ N

k ln(2) .
An alternative approach is to define the immunity profile according to the

complexity of the decoding procedures. Mainly two different approaches have
been proposed in the literature. The first approach [6] consists in associating a
smaller linear code of dimension αk� (with α < 1) to the keystream on which
a maximum-likelihood procedure is performed. The resulting complexity of the
decoding step is about O

(
ε−2t · 2αk� · kα�

)
(where t is some positive integer).

The second approach [1] uses the existence of low-density parity-check equa-
tions to perform an efficient iterative decoding algorithm. When parity-check
equations with weight w are used, the complexity of their decoding procedure

is about O
( (

1
ε

) 2w(w−2)
w−1 2

k�
w−1

)
. Consequently, if the immunity profile ϕ is such

that ϕ(�) ≤ 2β� for � > 0 then the complexity of the decoding procedure of the
first approach [6] would be greater than O

(
22t(n+1) · 2(αk−2tβ)� · αk�

)
while the

complexity of the second approach [1] would be greater than O
(
2

2w(w−2)
w−1 (n+1) ·
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2
k−2w(w−2)β

w−1 �
)
. Basically, decoding the keystream of a combiner generator could

be a very hard problem even if the LFSR registers are combined through a
Boolean function f with an exponential immunity profile, that is, of the form
ϕ(�) = λ2β�, � 
= 0 (the lower the values of β and λ, the more secure the stream
cipher).

3.2 Composition of Boolean Functions

Let k be an integer greater than or equal to 2 and consider a Boolean func-
tion f over F

k
2 . For each i ∈ {1, . . . , k}, let ni be an integer greater than or

equal to 2 and fi be a Boolean function over F
ni
2 . The composition of f by the

fi’s is by definition the Boolean function F over F
n1
2 × · · · × F

nk
2 defined by

(x1, . . . , xk) �→ f
(
f1(x1), . . . , fk(xk)

)
. Such a construction appears in iterated

ciphers where a high complexity ciphering function is required, for example in
a self synchronizing stream cipher. In a block cipher, vector valued functions
are used, but the analysis principle is quite similar. In order to apply a linear
cryptanalysis, a linear approximation of the ciphering function is required and
the best approximation is given by the analysis of the above construction. On
the other hand, the designer must take care at constructing highly nonlinear
ciphering function. By definition, the Walsh transform of the iterated function
F is, for any vector (u1, . . . , uk) ∈ F

n1
2 × · · · × F

nk
2 ,

χ̂F (u1, . . . , uk) =
∑

(x1,...,xk)∈F
n1
2 ×···×F

nk
2

(−1)f
(
f1(x1),...,fk(xk)

)
+u1·x1+···+uk·xk

This expression can be expressed by means of the Walsh transform of f and of
the fi’s. For this purpose, the inverse Walsh transform formula is used.

χ̂F (u1, . . . , uk) =
∑

(x1,...,xk)

1
2k

∑
v∈Fk

2

χ̂f (v)(−1)v1f1(x1)+u1·x1+···+vkfk(xk)+uk·xk

=
1
2k

∑
v∈F

k
2

χ̂f (v)
∏

i|vi=0

(2niδ0(ui))
∏

i|vi=1

χ̂fi(ui)

where δ0 denotes the Boolean function that takes value 1 at the zero vector
and 0 elsewhere. Relation (5) shows that the major contribution to the Walsh
transform of F is the 2ni factor that appears if ui = 0, and this contribution
grows exponentially with the number of zero components ui. This implies that
the best linear approximations of F are heuristically those of low weights. In or-
der to counterbalance this effect, the idea is to choose a function f with a Walsh
transform that grows exponentially with the weight of the variable. In this case,
a very approximate bound on the nonlinearity of F can even be obtained. Sup-
pose that all ni’s equal n, that the Walsh transform of each fi is bounded by
M , that is, |χ̂fi(ui)| ≤ M and that there exists a constant a such that, for any
vector v ∈ Fk

2 , one has |χ̂f (v)| ≤ awt(v). For (u1, . . . , uk) ∈ Fn
2 × · · · × Fn

2 , let



370 C. Carlet, P. Guillot, and S. Mesnager

S denote the set
{
i ∈ {1, . . . , k} | ui 
= 0

}
and s denote the cardinality of S.

As the nonzero terms of sum (5) are those for which vi = 0 implies ui = 0, the
summation can be limited to vectors v whose support supp(v) includes S. Thus,

|χ̂F (u1, . . . , uk)| ≤ 1
2k

∑
v|S⊂supp(v)

awt(v)Mwt(v)(2n)k−wt(v)

≤ 1
2k

k∑
t=s

(
k − s
t− s

)
(2n)k−tM tat =

M sas

2k
(2n + aM)k−s

In consequence, in some iterated cipher, a round ciphering function with an
immunity profile that grows exponentially may provide a better resistance to
linear cryptanalysis.

4 Almost Resilient Boolean Functions and ϕ-Correlation
Immune Boolean Functions

An alternative approach was proposed by Kurosawa [11] that relaxes the con-
straints of balancedness of the sub-functions and introduces the concept of almost
resiliency. Each of the two approaches relies on one of the characterizations of
correlation immunity that are equivalent. Consequently, it is advisable to wonder
the possible connections between these two approaches. We clarify these connec-
tions in this section. We first recall the definition of almost resilient Boolean
functions.

Definition 2 ([10]). Let f ∈ Bn. Let t be any positive integer less than n. Let
ε be any positive real less than 1. Then f is said to be ε-almost (n, 1, t)-resilient
if
∣∣∣Pr
(
f(X) = y | XI = σ

)
− 1

2

∣∣∣ ≤ ε for any subset I = {i1, . . . , it} of {1, . . . , n}
whose cardinality equals t, σ ∈ Ft

2 and y ∈ F2. Here {XI = σ} denotes the event
{Xi1 = σ1, . . . , Xit = σt}.

The restrictions of an ε-almost (n, 1, t)-resilient Boolean function f , obtained
by fixing t input bits, lie at distance at most ε2n−t from balanced functions. A
sufficient condition for almost resiliency involving the Walsh transform has been
proposed in [9].

Proposition 1 ([9, Corollary 4.1]). Let f ∈ Bn, ε be a positive real and t be
a positive integer less than n. Suppose that f is balanced and that, for all ω ∈ Fn

2

such that 1 ≤ wt(ω) ≤ t,
∣∣χ̂f (ω)

∣∣ ≤ 2n+1ε. Then f is ((2t−1)ε)-almost (n, 1, t)
resilient.

This result can be stated in a much more precise way for ϕ-correlation immune
Boolean functions. First, some notation is introduced. Let f be an n-variable
Boolean function and σ = (σ1, . . . , σr) ∈ Fr

2. For any subset I = {i1, . . . , ir} of
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{1, . . . , n}, we denote by fσ
I the sub-function on F

n−r
2 obtained by setting the

ijth input to σj for every j ∈ {1, . . . , r}. We finally recall the Poisson summation
formula [2, Corollary 1]. Let f be a Boolean function on Fn

2 . Then, for any vector
space E of Fn

2 , and any a, b ∈ Fn
2 , we have∑

u∈a+E

(−1)b·uχ̂f (u) = |E| (−1)a·b ∑
x∈b+E⊥

(−1)a·x+f(x) (5)

where E⊥ = {x ∈ F
n
2 / ∀y ∈ E, x · y = 0} is the dual of E. We then prove

Proposition 2. Let f ∈ Bn and let ϕ be any integer-valued mapping over
{0, . . . , n}. Assume that f is ϕ-correlation immune. Let r ∈ {1, . . . , n − 1},
σ ∈ Fr

2 and {i1, . . . , ir} ⊂ {1, . . . , n}. Then fσ
I is ϕr-correlation immune with

ϕr(k) = 1
2r

∑r
j=0

(
r
j

)
ϕ(k + j), k ∈ {0, . . . , n− r}.

Proof. In this proof, I = {i1, . . . , ir} is an arbitrary subset of {1, . . . , n} (r < n),
σ is an element of Fr

2 and ω is an element of F
n−r
2 . Let E be the vector space

whose dual equals E⊥ = {x ∈ Fn
2 | xi1 = · · · = xir = 0}. Let b ∈ Fn

2 be such
that bij = σj for every j ∈ {1, . . . , r} and 0 otherwise. Set {k1, . . . , kn−r} =
{1, . . . , n} \ {i1, . . . , ir}. Assume that k1 < · · · < kn−r. Let a ∈ Fn

2 be such that
akj = ωj for j ∈ {1, . . . , n − r} and 0 otherwise. With such notation, we have∑

x∈b+E⊥(−1)a·x+f(x) = χ̂fσ
I
(ω). Then, we deduce from the Poisson summation

formula (5) that

|χ̂fσ
I
(ω)| =

1
|E|

∑
u∈a+E

(−1)b·uχ̂f (u) .

The Hamming weights of the elements of a+E range from wt(ω) to wt(ω) + r.
Therefore

|χ̂fσ
I
(ω)| ≤ 1

|E| ×
r∑

j=0

(
r

j

)
ϕ(wt(ω) + j) .

This proposition is a generalization of the well-known result : if a n-variable
Boolean function is correlation immune of order t then any sub-function obtained
by fixing r inputs with r < t is (t − r)-th order correlation immune. We then
prove thanks to this Proposition the following statement.

Proposition 3. Let n be any integer, n ≥ 2. Let ϕ be any integer-valued map-
ping over the set {1, . . . , n}. Let f be a Boolean function over Fn

2 . Assume that f
is ϕ-correlation immune. Then f is εϕ,t-almost (n, 1, t) resilient for any positive
integer t less than n where εϕ,t = 1

2n+1

∑t
j=1

(
t
j

)
ϕ(j).

Proof. Let I = {i1, . . . , it} be an arbitrary subset of {1, . . . , n} (t < n) and σ is

an element of Ft
2. Note that Pr

(
f(X) = y | XI = σ

)
= 1

2 ±
χ̂fσ

I
(0)

2n−t+1 . According to
Proposition 2, fσ

I is ϕt-correlation immune with ϕt(k) = 1
2t

∑t
j=0

(
t
j

)
ϕ(k + j),

k ∈ {0, . . . , n− t}. Therefore,
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∣∣Pr
(
f(X) = y | XI = σ

)
− 1

2

∣∣ = 1
2n−t+1

|χ̂fσ
I
(0)| ≤ 1

2n+1

t∑
j=0

(
t

j

)
ϕ(j) .

Remark 3. We obtain a better result than the one directly deduced from Propo-
sition 1 for ϕ-correlation immune Boolean functions. Indeed, Proposition 1 only
allows to conclude that f is ε′ϕ,t-almost (n, 1, t) resilient with ε′ϕ,t = 2t−1

2n+1 ·
maxj∈{1,...,t} (ϕ(j)).

5 Primary Constructions of ϕ-Correlation Immune
Boolean Functions

5.1 Maiorana-McFarland’s Construction

The Maiorana-McFarland’s class is the set of all n-variable Boolean functions
which can be written as follows (n being a positive integer) :

∀(x, y) ∈ F
r
2 × F

s
2, f(x, y) = π(y) · x⊕ g(y) , (6)

where r and s are two positive integers such that r+s = n, where π is a Boolean
map from F

s
2 to F

r
2 and g is a s-variable Boolean function. The Walsh transform

of such a Boolean function is

∀(a, b) ∈ F
r
2 × F

s
2, χ̂f (a, b) = 2r

∑
y∈π−1(a)

(−1)b·y+g(y) .

Resilient Boolean functions whose immunity profile increases in proportion to
the square root of the order can be designed from Maiorana-McFarland’s class.
Indeed, suppose that we can find π such that, for every a ∈ Fr

2,

#π−1(a) = 0 if wt(a) ≤ t, and
#π−1(a) ≤ λ�

√
wt(a)	 otherwise

(7)

for some positive integer t less than r and some positive integer λ. Then any
Boolean function f of the form (6) is ϕ-correlation immune with ϕ(�) = 0 if
� ∈ {0, . . . , t}, ϕ(�) = 2rλ�

√
�	 for � ∈ {t+1, . . . , r} and ϕ(�) = 2rλ

√
r otherwise.

The existence of such an application π requires that r, s and t fulfil the following
inequality deduced from

⋃
a∈Fr

2,wt(a)≥t+1 π
−1(a) = F

s
2:

λ

r∑
l=t+1

(
r

l

)
�
√
�	 ≥ 2s . (8)

The nonlinearity of f is greater than or equal to 2n−1−2r−1�
√
r	 and its algebraic

degree equals max(deg(π1)+1, . . . ,deg(πr)+1, s). More generally, one can design
ψ-correlation immune Boolean function from the class of Maiorana-McFarland
with ψ(i) = λ2rϕ(min(i, r)) for i ∈ {0, . . . , n} provided that λ

∑r
l=0

(
r
l

)
ϕ(�) ≥ 2s

under the assumption #π−1(a) ≤ λϕ(wt(a)) for every a ∈ F
r
2.
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Note that it is possible to design ϕ-correlation immune Boolean functions from
the effective partial spreads class [4] with the same nice properties. Because of
length limits, we do not develop this further in the present paper.

5.2 Symmetric Boolean Functions with Exponential Correlation
Immunity Profile

The condition of ϕ-correlation immunity only deals with the weight of the argu-
ment of the Walsh transform. It is then natural to consider symmetric functions,
that is, Boolean functions whose output only depends on the weight of the input
vector. If f is an n-variable symmetric Boolean function (n is a positive integer),
then there exists a function νf : {0, . . . , n} → F2 such that f(x) = νf (wt(x)) for
every x ∈ Fn

2 . In the sequel, the function νf is called the simplified value vector
of the symmetric function f .

The Fourier transform of an n-variable symmetric Boolean function f is sym-
metric too and can be expressed by means of Krawtchouk polynomials for
all ω ∈ Fn

2 by f̂(ω) =
∑n

k=0 νf (k)Kk(wt(ω), n) where νf denotes the simpli-
fied value vector associated to f and where Kk(X,n) =

∑n
j=0(−1)j

(
X
j

)(
n−X
k−j

)
,

k = 0, 1, . . . n, are the so-called Krawtchouk polynomials. For every k ∈ {0, 1, 2},
we denote by sk,3 the n-variable symmetric Boolean function whose simplified
vector value νsk,3 is defined by νsk,3(i) = 1 if i ≡ k (mod 3) and 0 other-
wise. The values of the Fourier transform of such functions can easily be calcu-
lated. For every u ∈ F

n
2 , denoting � = wt(u) and every k ∈ {0, 1, 2}, we have

ŝk,3(u) =
∑

0≤j≤n
j≡k (mod 3)

Kj(�, n). Let us denote by ω the primitive third root of

unity ω = e2iπ/3. Since we have ω3 = 1, we deduce that
∑2

k=0 ω
keŝk,2(u) =∑

0≤j≤n ω
jeKj(�, n), for every e ∈ {0, 1, 2}. The generating function of the

Krawtchouk polynomials is
∑n

k=0 Kk(w, n)zk = (1 − z)w(1 + z)n−w, for w ∈
{0, . . . , n}, and z ∈ C. This implies that

∑2
k=0 ω

keŝk,3(u) = (1−ωe)�(1+ωe)n−�.
It is well-known that the inverse of the 3 × 3 matrix whose term at row k and
column e equals ωke is the matrix whose term at row k and column e equals
1
3ω

−ke. Thus, For every k ∈ {0, 1, 2} and every u ∈ Fn
2 , denoting � = wt(u),

the value at u of the Fourier transform ŝk,3(u) of the function sk,3 equals
1
3

∑2
e=0(1−ωe)�(1+ωe)n−�ω−ke. Hence ŝk,3(u) = 2

3*
(
(1− ω)� (1 + ω)n−�

ω−k
)

(where *(z) is the real part of z ∈ C) because ω2 is the complex conjugate of ω.
We deduce finally from 1+ω+ω2 = 0 and (1−ω)ω−2 = i ·

√
3 (where i is the

primitive square root of unity in C) that χ̂sk,3(u) = −2ŝk,3(u) = (−1)n+1−� · 4
3 ·

3
�
2 ·*
(
i�ω2n−k

)
. Now, *

(
i�ω2n−k

)
equals±1 if � is even and 2n−k ≡ 0 (mod 3),

± 1
2 if � is even and 2n− k 
≡ 0 (mod 3), 0 if � is odd and 2n− k ≡ 0 (mod 3),
±

√
3

2 if � is odd and 2n − k 
≡ 0 (mod 3). Then the n-variable symmetric
Boolean functions sk,3, k ∈ {0, 1, 2}, are ϕ-correlation immune where ϕ is the
integer valued mapping over {0, . . . , n} defined by ϕ(i) = 4 · 3�

i−1
2 	 for every

i ∈ {1, . . . , n} and ϕ(0) = 2n.
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6 Secondary Constructions of ϕ-Correlation Immune
Boolean Functions

6.1 The Generalized Tarannikov et al. Construction

A series of secondary constructions of highly nonlinear resilient functions has
been proposed in the literature. This series has led to the very general fol-
lowing construction [3] : Let r, s, t and m be positive integers such that t <
r and m < s. Let f1 and f2 be two r-variable t-resilient functions. Let g1
and g2 be two s-variable m-resilient functions. Then the function h(x, y) =
f1(x) ⊕ g1(y) ⊕ (f1 ⊕ f2)(x) (g1 ⊕ g2)(y), x ∈ F r

2 , y ∈ F s
2 is an (r + s)-variable

(t +m+ 1)-resilient function. The Walsh transform of h takes value χ̂h(a, b) =
1
2 χ̂f1(a) [χ̂g1(b) + χ̂g2(b)] + 1

2 χ̂f2(a) [χ̂g1(b)− χ̂g2(b)] . Assume then that f1 and
f2 (resp. g1 and g2) are ϕ-correlation immune (resp. ϕ′-correlation immune),
where ϕ and ϕ′ are exponential, say ϕ(�) = λ2β� and ϕ′(�) = λ′2β′�. Then, since
wt(a, b) = wt(a) +wt(b), h is ϕ′′-correlation immune with ϕ′′(�) = 2λλ′2(β+β′)�.
Note that if f1 = f2 or g1 = g2, that is, in the case of a direct sum, we have
ϕ′′(�) = λλ′2(β+β′)�.

6.2 A Recent Secondary Construction Without Extension of the
Number of Variables

Given three Boolean functions f1, f2 and f3, there is a nice relationship between
their Walsh transforms and the Walsh transforms of two of their elementary
symmetric related functions [4]: let us denote by σ1 the Boolean function equal
to f1⊕ f2⊕ f3 and by σ2 the Boolean function equal to f1f2⊕ f1f3⊕ f2f3; then
we have f1 + f2 + f3 = σ1 + 2σ2 (where these additions are calculated in the
ring of integers, that is, not mod 2). This implies χ̂f1 + χ̂f2 + χ̂f3 = χ̂σ1 + 2χ̂σ2 .
If f1, f2 and f3 are k-th order correlation immune (resp. k-resilient), then σ1

is k-th order correlation immune (resp. k-resilient) if and only if σ2 is k-th
order correlation immune (resp. k-resilient). Moreover, if f1, f2 and f3 are ϕ-
correlation immune as well as σ1, then, σ2 is 2ϕ-correlation immune, whatever
is ϕ. This construction of σ2 from f1, f2, f3 and σ1 has the interest of increasing
the algebraic complexity of the functions (e.g. their algebraic immunity) without
decreasing their nonlinearity (see [4]).
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Abstract. Given a Boolean function f on n-variables, we find a reduced
set of homogeneous linear equations by solving which one can decide
whether there exist annihilators at degree d or not. Using our method
the size of the associated matrix becomes νf × (

∑d
i=0

(
n
i

) − μf ), where,
νf = |{x|wt(x) > d, f(x) = 1}| and μf = |{x|wt(x) ≤ d, f(x) = 1}|
and the time required to construct the matrix is same as the size of the
matrix. This is a preprocessing step before the exact solution strategy
(to decide on the existence of the annihilators) that requires to solve
the set of homogeneous linear equations (basically to calculate the rank)
and this can be improved when the number of variables and the number
of equations are minimized. As the linear transformation on the input
variables of the Boolean function keeps the degree of the annihilators
invariant, our preprocessing step can be more efficiently applied if one
can find an affine transformation over f(x) to get h(x) = f(Bx + b)
such that μh = |{x|h(x) = 1, wt(x) ≤ d}| is maximized (and in turn νh

is minimized too). We present an efficient heuristic towards this. Our
study also shows for what kind of Boolean functions the asymptotic re-
duction in the size of the matrix is possible and when the reduction is
not asymptotic but constant.

Keywords: Algebraic Attacks, Algebraic Normal Form, Annihilators,
Boolean Functions, Homogeneous Linear Equations.

1 Introduction

Results on algebraic attacks have received a lot of attention recently in studying
the security of crypto systems [2,4,6,9,11,12,13,14,15,21,1,20,16]. Boolean func-
tions are important primitives to be used in the crypto systems and in view of
the algebraic attacks, the annihilators of a Boolean function play considerably
serious role [5,7,10,17,18,19,22,23].

Denote the set of all n-variable Boolean functions by Bn. One may refer
to [17] for the detailed definitions related to Boolean functions, e.g., truth table,
algebraic normal form (ANF), algebraic degree (deg), weight (wt), nonlinear-
ity (nl) and Walsh spectrum of a Boolean function. Any Boolean function can
be uniquely represented as a multivariate polynomial over GF (2), called the
algebraic normal form (ANF), as

G. Gong et al. (Eds.): SETA 2006, LNCS 4086, pp. 376–390, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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f(x1, . . . , xn) = a0 +
∑

1≤i≤n

aixi +
∑

1≤i<j≤n

ai,jxixj + . . .+ a1,2,...,nx1x2 . . . xn,

where the coefficients a0, ai, ai,j , . . . , a1,2,...,n ∈ {0, 1}. The algebraic degree,
deg(f), is the number of variables in the highest order term with non zero co-
efficient. Given f ∈ Bn, a nonzero function g ∈ Bn is called an annihilator of
f if f ∗ g = 0. A function f should not be used if f or 1 + f has a low degree
annihilator. It is also known [14,22] that for any function f or 1 + f must have
an annihilator at the degree �n

2 �. Thus the target of a good design is to use
a function f such that neither f nor 1 + f has an annihilator at a degree less
than �n

2 �. Thus there is a need to construct such functions and the first one in
this direction appeared in [18]. Later symmetric functions with this property has
been presented in [19] followed by [7]. However, all these constructions are not
good in terms of other cryptographic properties.

Thus there is a need to study the Boolean functions, which are rich in terms
of other cryptographic properties, in terms of their annihilators. One has to
find out the annihilators of a given Boolean function for this. Initially a basic
algorithm in finding the annihilators has been proposed in [22, Algorithm 2].
A minor modification of [22, Algorithm 2] has been presented very recently
in [8] to find out relationships for algebraic and fast algebraic attacks. In [7],
there is an efficient algorithm to find the annihilators of symmetric Boolean
functions, but symmetric Boolean functions are not cryptographically promising.
Algorithms using Gröbner bases are also interesting in this area [3], but still
they are not considerably efficient. Recently more efficient algorithms have been
designed in this direction [1,20]. The algorithm presented in [1] can be used
efficiently to find out relationships for algebraic and fast algebraic attacks. In [1],
matrix triangularization has been exploited nicely to solve the annihilator finding
problem (of degree d for an n-variable function) in O(

(
n
d

)2) time complexity.
In [20] a probabilistic algorithm having time complexityO(nd) has been proposed
where the function is divided to its sub functions recursively and the annihilators
of the sub functions are checked to study the annihilators of the original function.

The main idea in our effort is to reduce the size of the matrix (used to solve
the system of homogeneous linear equations) as far as possible, which has not
yet been studied in a disciplined manner to the best of our knowledge. We
could successfully improve the handling of equations associated with small weight
inputs of the Boolean function. This uses certain structure of the matrix that
we discover here. We start with a matrix Mn,d(g) (see Theorem 1) which is
self inverse and its discovered structure allows to compute the new equations
efficiently by considering the matrix UAr (see Theorem 3 in Section 3). Moreover,
each equation associated with a low weight input point directly provides the value
of an unknown coefficient of the annihilator, which is the key point that allows
to lower the number of unknowns. Further reduction in the size of the matrix
is dependent on getting a proper linear transformation on the input variables of
the Boolean function, which is discussed in Section 4.

One may wonder whether the very recently available strategies in [1,20] can be
applied after the initial reduction proposed in this paper to get further
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improvements in finding the lowest degree annihilators. The standard Gaussian re-
duction technique ([20, Algorithm 1]) is used in the main algorithm [20, Algorithm
2], and in that case our idea of reduction of the matrix size will surely provide im-
provement. However, the ideas presented in [1, Algorithm 1, 2] and [20, Algorithm
3] already exploit the structure of the linear system in an efficient way. In partic-
ular, the algorithms in [1] by themselves deal with the equations of small weight
efficiently. Thus it is not clear whether the reduction of matrix size proposed by us
can be applied to exploit further efficiency from these algorithms.

2 Preliminaries

Consider all the n-variable Boolean functions of degree at most d, i.e., R(n, d),
the Reed-Muller code of order d and length 2n. Any Boolean function can be seen
as a multivariate polynomial over GF (2). Note that R(n, d) is a vector subspace
of the vector space Bn, the set of all n-variable Boolean functions. Now if we
consider the elements of R(n, d) as the multivariate polynomials over GF (2),
then the standard basis is the set of all nonzero monomials of degree ≤ d. That
is, the standard basis is

Sn,d = {xi1 . . . xil
: 1 ≤ l ≤ d and 1 ≤ i1 < i2 < · · · < il ≤ n} ∪ {1},

where the input variables of the Boolean functions are x1, . . . , xn.
The ordering among the monomials is considered in lexicographic ordering

(<l) as usual, i.e., xi1xi2 . . . xik
<l xj1xj2 . . . xjl

if either k < l or k = l and there
is 1 ≤ p ≤ k such that ik = jk, ik−1 = jk−1, . . . , ip+1 = jp+1 and ip < jp. So,
the set Sn,d is a totally ordered set with respect to this lexicographical ordering
(<l). Using this ordering we refer the monomials according their order, i.e., the
k-th monomial as mk, 1 ≤ k ≤

∑d
i=0

(
n
i

)
following the convention ml <l mk if

l < k.

Definition 1. Given n > 0, 0 ≤ d ≤ n, we define a mapping

vn,d : {0, 1}n �→ {0, 1}
∑d

i=0 (n
i),

such that vn,d(x) = (m1(x),m2(x), . . . ,m∑d
i=0 (n

i)(x)). Here mi(x) is the ith
monomial as in the lexicographical ordering (<l) evaluated at the point x =
(x1, x2, . . . , xn).

To evaluate the value of the t-th coordinate of vn,d(x1, x2, . . . , xn) for 1 ≤ t ≤∑d
i=0

(
n
i

)
, i.e., [vn,d(x1, . . . , xn)]t, one requires to calculate the value of the mono-

mial mt (either 0 or 1) at (x1, x2, . . . , xn). Now we define a matrix Mn,d with
respect to a n-variable function f . To define this we need another similar or-
dering (<l) over the elements of vector space {0, 1}n. We say for u, v ∈ {0, 1}n,
u <l v if either wt(u) < wt(v) or wt(u) = wt(v) and there is some 1 ≤ p ≤ n
such that un = vn, un−1 = vn−1, . . . , up+1 = vp+1 and up = 0, vp = 1.
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Definition 2. Given n > 0, 0 ≤ d ≤ n and an n-variable Boolean function f ,
we define a wt(f)×

∑d
i=0

(
n
i

)
matrix

Mn,d(f) =

⎡⎢⎢⎢⎣
vn,d(X1)
vn,d(X2)

...
vn,d(Xwt(f))

⎤⎥⎥⎥⎦
where any Xi is an n-bit vector and supp(f) = {X1, X2, . . . , Xwt(f)} and X1 <

l

X2 <
l · · · <l Xwt(f); supp(f) is the set of inputs for which f outputs 1.

Note that the matrix Mn,d(f) is the transpose of the restricted generator matrix
for Reed-Muller code of length 2n and order d, R(d, n), to the support of f
(see also [9, Page 7]). Any row of the matrix Mn,d(f) corresponding to an input
vector (x1, . . . , xn) is

0 deg 1 deg . . . ddeg︷︸︸︷
1
︷ ︸︸ ︷
x1, . . . , xi, . . . , xn . . .

︷ ︸︸ ︷
x1 . . . xd, . . . , xi1 . . . xid

, . . . , xn−d+1 . . . xn .

Each column of the matrix is represented by a specific monomial and each entry
of the column tells whether that monomial is satisfied by the input vector which
identifies the row, i.e., the rows of this matrix correspond to the evaluations of the
monomials having degree at most d on support of f . As already discussed, here
we have one-to-one correspondence from the input vectors x = (x1, . . . , xn) to the
row vectors vn,d(x) of length

∑d
i=0

(
n
i

)
. So, each row is fixed by an input vector.

2.1 Annihilator of f and Rank of the Matrix Mn,d(f)

Let f be an n-variable Boolean function. We are interested to find out the lowest
degree annihilators of f . Let g ∈ Bn be an annihilator of f , i.e., f(x1, . . . , xn) ∗
g(x1, . . . , xn) = 0. In terms of truth table, this means that the function f AND g
will be a constant zero function, i.e., for each vector (x1, . . . , xn) ∈ {0, 1}n, the
output of f AND g will be zero. That means,

g(x1, . . . , xn) = 0 if f(x1, . . . , xn) = 1. (1)

Suppose degree of the function g is ≤ d, then the ANF of g is of the form
g(x1, . . . , xn) = a0 +

∑n
i=0 aixi + · · ·+

∑
1≤i1<i2···<id≤n ai1,...,id

xi1 · · ·xid
where

the subscripted a’s are from {0, 1} and not all of them are zero. Following Equa-
tion 1, we get the following wt(f) many homogeneous linear equations

a0 +
n∑

i=0

aixi + · · ·+
∑

1≤i1<i2···<id≤n

ai1,...,id
xi1 · · ·xid

= 0, (2)

considering the input vectors (x1, . . . , xn) ∈ supp(f). This is a system of ho-
mogeneous linear equations on a’s with

∑d
i=0

(
n
i

)
many a’s as variables. The
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matrix form of this system of equations is Mn,d(f) Atr = O, where A =
(a0, a1, a2, . . . , an−d+1,...,n), the row vector of coefficients of the monomials which
are ordered according to the lexicographical order <l. Each nonzero solution of
the system of equations formed by Equation 2 gives an annihilator g of degree
≤ d. This is basically the Algorithm 1 presented in [22]. Since the number of solu-
tions of this system of equations are connected to the rank of the matrix Mn,d(f),
it is worth to study the rank and the set of linear independent rows/columns of
matrix Mn,d(f). If the rank of matrix Mn,d(f) is equal to

∑d
i=0

(
n
i

)
(i.e., number

of columns) then the only solution is the zero solution. So, for this case f has
no annihilator of degree ≤ d. This implies that the number of rows ≥ number
of columns, i.e., wt(f) ≥

∑d
i=0

(
n
i

)
which is the Theorem 1 in [17]. If the rank

of matrix is equal to
∑d

i=0

(
n
i

)
− k for k > 0 then the number of linearly inde-

pendent solutions of the system of equations is k which gives k many linearly
independent annihilators of degree ≤ d and 2k − 1 many number of annihilators
of degree ≤ d. However, to implement algebraic attack one needs only linearly
independent annihilators. Hence, finding the degree of lowest degree annihilator
of either f or 1 + f , one can use the following algorithm.

Algorithm 1
for(i = 1 to �n

2 � − 1) {
find the rank r1 of the matrix Mn,i(f);
find the rank r2 of the matrix Mn,i(1 + f);
if min{r1, r2} <

∑i
j=0

(
n
j

)
then output i;

}
output �n

2 �;
Since either f or 1 + f has an annihilator of degree ≤ �n

2 �, we are interested
only to check till i = �n

2 �. This algorithm is equivalent to Algorithm 1 in [22].
The simplest and immediate way to solve the system of these equations or

find out the rank of Mn,d(f),Mn,d(1 + f) is the Gaussian elimination process.
To check the existence or to enumerate the annihilators of degree ≤ �n

2 � for
a balanced function, the complexity is approximately (2n−2)3. Considering this
time complexity, it is not encouraging to check annihilators of a function of 20
variables or more using the presently available computing power. However, given
n and d, the matrix Mn,d(f) has pretty good structure, which we explore in this
paper towards a better algorithm (that is solving the set of homogeneous linear
equations in an efficient way by decreasing the size of the matrix involved).

3 Faster Strategy to Construct the Set of Homogeneous
Linear Equations

In this section we present an efficient strategy to reduce the set of homogeneous
linear equations. First we present a technical result.

Theorem 1. Let g be an n-variable Boolean function defined as g(x) = 1 iff
wt(x) ≤ d for 0 ≤ d ≤ n. Then Mn,d(g)−1 = Mn,d(g), i.e., Mn,d(g) is a self
inverse matrix.
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Proof. Suppose F = Mn,d(g)Mn,d(g). Then the i-th row and j-th column entry
of F (denoted by Fi,j) is the scalar product of i-th row and j-th column of
Mn,d(g). Suppose the i-th row is vn,d(x) for x ∈ {0, 1}n having xq1 , . . . , xql

as
1 and others are 0. Further consider that the j-th column is the evaluation of
the monomial xr1 . . . xrk

at the input vectors belonging to the support of g. If
{r1, . . . , rk} 
⊆ {q1, . . . , ql} then Fij = 0. Otherwise, Fi,j =

(
l−k
0

)
+
(
l−k
1

)
+ · · ·+(

l−k
l−k

)
mod 2 = 2l−k mod 2. So, Fi,j = 1 iff {xr1 , . . . , xrk

} = {xq1 , . . . , xql
}. That

implies, Fi,j = 1 iff i = j i.e., F is identity matrix. Hence, Mn,d(g) is its own
inverse. ��
See the following example for the structure of Mn,d(g) when n = 4 and d = 2.
Example 1. Let us present an example of Mn,d(g) for n = 4 and d = 2. We
have {1, x1, x2, x3, x4, x1x2, x1x3, x2x3, x1x4, x2x4, x3x4}, the list of 4-variable
monomials of degree ≤ 2 in ascending order (<l).

Similarly, {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 0, 0),
(1, 0, 1, 0), (0, 1, 1, 0), (1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1)} present the 4 dimensional
vectors of weight ≤ 2 in ascending order (<l). So the matrix

M4,2(g) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0
1 1 0 1 0 0 1 0 0 0 0
1 0 1 1 0 0 0 1 0 0 0
1 1 0 0 1 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0 1 0
1 0 0 1 1 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

One may check that M4,2(g) is self inverse.

Lemma 1. Let A be a nonsingular m×m binary matrix where the row vectors
are denoted as v1, v2, . . . , vm. Let U be a k × m binary matrix, k ≤ m, where
the rows are denoted as u1, u2, . . . , uk. Let W = UA−1, a k ×m binary matrix.
Consider that a matrix A′ is formed from A by replacing the rows vi1 , vi2 , . . . , vik

of A by the vectors u1, u2, . . . , uk. Further consider that a k × k matrix W ′ is
formed by taking the i1-th, i2-th, . . . , ik-th columns of W (out of m columns).
Then A′ is nonsingular iff W ′ is nonsingular.

Proof. Without loss of generality, we can take i1 = 1, i2 = 2, . . . , ik = k. So, the
row vectors of A′ are u1, . . . , uk, vk+1, . . . , vm.

We first prove that if the row vectors ofA′ are not linearly independent then the
row vectors of W ′ are also not linearly independent. As the row vectors of A′ are
not linearly independent, we have α1, α2, . . . , αm ∈ {0, 1} (not all zero) such that∑k

i=1 αiui +
∑m

i=k+1 αivi = 0. If αi = 0 for all i, 1 ≤ i ≤ k then
∑m

i=k+1 αivi = 0
which implies αi = 0 for all i, k + 1 ≤ i ≤ m as vk+1, vk+2, . . . , vm are linearly
independent. So, all αi’s for 1 ≤ i ≤ k can not be zero.

Further, we have UA−1 = W , i.e., U = WA, i.e.,⎛⎜⎜⎜⎝
u1

u2

...
uk

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
w1

w2

...
wk

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
v1
v2
...
vm

⎞⎟⎟⎟⎠ , i.e., ui = wi

⎛⎜⎜⎜⎝
v1
v2
...
vm

⎞⎟⎟⎟⎠ .
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Hence,
∑k

i=1 αiui =
∑k

i=1 αiwi

⎛⎜⎜⎜⎝
v1
v2
...
vm

⎞⎟⎟⎟⎠ = r

⎛⎜⎜⎜⎝
v1
v2
...
vm

⎞⎟⎟⎟⎠
where r = (r1, r2, . . . , rm) =

∑k
i=1 αiwi.

If the restricted matrix W ′ were nonsingular, the vector r′ = (r1, r2, . . . , rk)
is non zero as (α1, α2, . . . , αk) is not all zero. Hence,

∑k
i=1 αiui +

∑m
i=k+1 αivi =

0, i.e.,
∑k

i=1 rivi +
∑m

i=k+1(ri + αi)vi = 0. This contradicts that v1, v2, . . . , vm

are linearly independent as r′ = (r1, r2, . . . , rk) is nonzero. Hence W ′ must be
singular. This proves one direction.

On the other direction if the restricted matrix W ′ is singular then there are
β1, β2, . . . , βk not all zero such that

∑k
i=0 βiwi = (0, . . . , 0, sk+1, . . . , sm). Hence,

∑k
i=0 βiui =

∑k
i=1 βiwi

⎛⎜⎜⎜⎝
v1
v2
...
vm

⎞⎟⎟⎟⎠ = sk+1vk+1 + · · · + smvm, i.e.,
∑k

i=0 βiui +

∑m
i=k+1 sivi = 0 which says matrix A′ is singular. ��

Following Lemma 1, one can check the nonsingularity of the larger matrix A′

by checking the nonsingularity of the reduced matrix W ′. Thus checking the
nonsingularity of the larger matrix A′ will be more efficient if the computation
of matrix product W = UA−1 can be done efficiently. The self inverse nature
of the matrix Mn,d(g) presented in Theorem 1 helps to achieve this efficiency.
In the rest of this section we will study this in detail. In the following result we
present the Lemma 1 in more general form.

Theorem 2. Let A be a nonsingular m×m binary matrix with m-dimensional
row vectors v1, v2, . . . , vm and U be a k ×m binary matrix with m-dimensional
row vectors u1, u2, . . . , uk. Consider W = UA−1, a k ×m matrix. The matrix
A′, formed from A by removing the rows vi1 , vi2 , . . . , vil

(l ≤ m) from A and
adding the rows u1, u2, . . . , uk (k ≥ l), is of rank m iff the rank of restricted k× l
matrix W ′ including only the i1-th, i2-th, . . . , il-th columns of W is l.

Proof. Here, the rank of matrix W ′ is l. So, there are l many rows of W ′, say
w′

p1
, . . . , w′

pl
which are linearly independent. So, following the Lemma 1 we have

the matrix A′′ formed by replacing the rows vi1 , . . . , vil
of A by up1 , . . . , upl

is
nonsingular, i.e., rank is m. Hence the matrix A′ where some more rows are
added to A′′ has rank m. The other direction can also be shown similar to the
proof of the other direction in Lemma 1. ��

Now using Theorem 1 and Theorem 2, we describe a faster algorithm to check the
existence of annihilators of certain degree d of a Boolean function f . Suppose g be
the Boolean function described in Theorem 1, i.e., supp(g) = {x|0 ≤ wt(x) ≤ d}.
In Theorem 1, we have already shown that Mn,d(g) is nonsingular matrix (in
fact it is self inverse). Let {x|wt(x) ≤ d and f(x) = 0} = {x1, x2, . . . , xl} and
{x|wt(x) > d and f(x) = 1} = {y1, y2, . . . , yk}. Then we consider Mn,d(f) as



Reducing the Number of Homogeneous Linear Equations 383

A, vn,d(x1), . . . , vn,d(xl) as vi1 , . . . , vil
and vn,d(y1), . . . , vn,d(yk) as u1, . . . , uk.

Then following Theorem 2 we can ensure whether Mn,d(f) is nonsingular. If it
is nonsingular, then there is no annihilator of degree ≤ d, else there are annihi-
lator(s). We may write this in a more concrete form as the following corollary
to Theorem 2.

Corollary 1. Let f be an n-variable Boolean function. Let Ar be the restricted
matrix of A = Mn,d(g), by taking the columns corresponding to the monomials
xi1xi2 . . . xil

such that l ≤ d and f(x) = 0 when xi1 = 1, xi2 = 1, . . . , xil
= 1 and

rest of the input variables are 0. Further U =

⎛⎜⎜⎜⎝
vn,d(y1)
vn,d(y2)

...
vn,d(yk)

⎞⎟⎟⎟⎠, where {y1, . . . , yk} =

{x|wt(x) > d and f(x) = 1}. If rank of UAr is l then there is no annihilator of
degree ≤ d, else there are annihilator(s) of degree ≤ d.

Proof. As per Theorem 2, hereW = UA−1 = UA, since A is self inverse following
Theorem 1 and hence W ′ is basically UAr. Thus the proof follows. ��

Now we can use the following technique for fast computation of the matrix
multiplication UAr. For this we first present a technical result and its proof is
similar in the line of the proof of Theorem 1.

Proposition 1. Consider g as in Theorem 1. Let y ∈ {0, 1}n such that i1, i2,
. . . , ip-th places are 1 and other places are 0. Consider the j-th monomial mj =
xj1xj2 . . . xjq according the ordering <l. Then the j-th entry of vn,d(y)Mn,d(g)
is 0 if {j1, . . . , jq} 
⊆ {i1, . . . , ip} else the value is

∑d−q
i=0

(
p−q

i

)
mod 2.

Following Proposition 1, we can get each row of U as some vn,d(y) and each
column of Ar as mj and construct the matrix UAr. One can precompute the
sums

∑d−q
i=0

(
p−q

i

)
mod 2 for d+1 ≤ p ≤ n and 0 ≤ q ≤ d, and store them and the

total complexity for calculating them is O(d2(n− d)). These sums will be used
to fill up the matrix UAr which is an l× k matrix according to Corollary 1. Let
us denote μf = |{x|wt(x) ≤ d, f(x) = 1}| and νf = |{x|wt(x) > d, f(x) = 1}|.
Then wt(f) = μf +νf and the matrix UAr is of dimension νf × (

∑d
i=0

(
n
i

)
−μf).

Clearly O(d2(n − d)) can be neglected with respect to νf × (
∑d

i=0

(
n
i

)
− μf ).

Thus we have the following result.

Theorem 3. Consider U and Ar as in Corollary 1. The time (and also space)
complexity to construct the matrix UAr is of the order of νf × (

∑d
i=0

(
n
i

)
−

μf ). Further checking the rank of UAr (as given in Corollary 1) one can decide
whether f has an annihilator at degree d or not.

In fact, to check the rank of the matrix UAr using Gaussian elimination process,
we need not store the νf many rows at the same time. One can add one row
(following the calculation to compute a row of the matrix given in Proposition 1)
at a time incrementally to the previously stored linearly independent rows by
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checking whether the present row is linearly independent with respect to the
already stored rows. If the current row is linearly independent with the existing
ones, then we do row operations and add the new row to the previously stored
matrix. Otherwise we reject the new row. Hence, our matrix size never crosses
the size (

∑d
i=0

(
n
i

)
− μf )× (

∑d
i=0

(
n
i

)
− μf ).

If νf (the number of rows) is less than (
∑d

i=0

(
n
i

)
− μf ) (the number of vari-

ables), then there will be nontrivial solutions and we can directly say that
the annihilators exist. Thus we always need to concentrate on the case νf ≥
(
∑d

i=0

(
n
i

)
− μf ), where the matrix size (

∑d
i=0

(
n
i

)
− μf )× (

∑d
i=0

(
n
i

)
− μf ) pro-

vides a further reduction than the matrix size νf × (
∑d

i=0

(
n
i

)
−μf ) and one can

save more space. This will be very helpful when one tries to check the annihilators
of small degree d.

One may refer to Subsection 3.1 of the extended version of this paper at IACR
eprint server (eprint.iacr.org, number 2006/032) to get detailed description why
our strategy provides asymptotic improvement than [22] in terms of constructing
this reduced set of homogeneous linear equations. In terms of the overall algo-
rithm to find the annihilators, our algorithm works around eight times faster
than [22] in general. Using our strategy to find the reduced matrix first and then
using the standard Gaussian elimination technique, we could find the annihi-
lators of any random balanced Boolean functions on 16 variables in around 2
hours in a Pentium 4 personal computer with 1 GB RAM. Note that, the very
recently known efficient algorithms [1,20] can work till 20 variables.

4 Further Reduction in Matrix Size Applying Linear
Transformation over the Input Variables of the
Function

To check for the annihilators, we need to compute the rank of the matrix UAr.
Following Theorem 3, it is clear that the size of the matrix UAr will decrease
if μf increases and νf decreases. Let B be an n × n nonsingular binary matrix
and b be an n-bit vector. The function f(x) has an annihilator at degree d iff
f(Bx + b) has an annihilator at degree d. Thus one will try to get the affine
transformation on the input variables of f(x) to get h(x) = f(Bx+ b) such that
|{x|h(x) = 1, wt(x) ≤ d}| is maximized. This is because in this case μh will be
maximized and νh will be minimized and hence the dimension of the matrix
UAr, i.e., νf × (

∑d
i=0

(
n
i

)
−μf ) will be minimized. This will indeed decrease the

complexity at the construction step (discussed in the previous section). More
importantly, it will decrease the complexity to solve the system of homogeneous
linear equations.

See the following example that explains the efficiency for a 5-variable function.

Example 2. We present an example for this purpose. Consider the 5-variable
Boolean function f constructed using the method presented in [18] such that
neither f nor 1+ f has an annihilator at a degree < 3. The standard truth table
representation of the function is 01010110010101100101011001101001, i.e., the
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outputs are corresponding to the inputs which are of increasing value. One can
check that |{x ∈ {0, 1}5 | f(x) = 1 & wt(x) < 3}| = 6. Now if we consider the

function h(x) = f(Bx+b) such thatB =

⎡⎢⎢⎢⎢⎣
1 1 1 0 1
1 1 1 1 0
1 0 1 0 0
1 1 0 0 0
1 0 0 0 0

⎤⎥⎥⎥⎥⎦, and b = {1, 1, 0, 0, 1}, then

|{x ∈ {0, 1}5 | h(x) = 1 & wt(x) < 3}| = 16 and one can immediately conclude
(from the results in [19]) that neither h nor 1+h has an annihilator of degree < 3.
This is an example where after finding the affine transformation there is even no
need for the solution step at all. For the function f , here h(x) = f(Bx+ b) such
that |{x|h(x) = 1, wt(x) ≤ d}| is maximized.

We also present an example for a sub optimal case. In this case we con-

sider B =

⎡⎢⎢⎢⎢⎣
1 0 1 0 0
1 1 0 0 0
1 1 1 0 1
0 0 0 1 1
0 1 1 1 0

⎤⎥⎥⎥⎥⎦, and b an all zero vector, then |{x ∈ {0, 1}5 | h(x) =

1 & wt(x) < 3}| = 14. Thus the dimension of the matrix UAr becomes 2 × 2
as νf = 2 and

∑d
i=0

(
n
i

)
− μf = 2. Thus one needs to check the rank of a 2× 2

matrix only.

Now the question is how to find such an affine transformation (for the optimal
or even for sub optimal cases) efficiently.

For exhaustive search to get the optimal affine transform one needs to check
f(Bx+ b) for all n×n nonsingular binary matrices B and n bit vectors b. Since
there are

∏n−1
i=0 (2n − 2i) many nonsingular binary matrices and 2n many n bit

vectors, one needs to check 2n
∏n−1

i=0 (2n−2i) many cases for an exhaustive search.
As weight of the input vectors are invariant under permutation of the arguments,
checking for only one nonsingular matrix from the set of all nonsingular matrices
whose rows are equivalent under certain permutation will suffice. Hence the
exact number of search options is 1

n!2
n
∏n−1

i=0 (2n − 2i). One can check for n× n
nonsingular binary matrices B where rowi < rowj for i < j (rowi is the decimal
value of binary pattern of ith row). It is clear that the search is infeasible for
n ≥ 8.

Now we present a heuristic towards this. Our aim is to find out an affine
transformation h(x) of f(x), i.e., h(x) = f(Bx + b), which maximizes the value
of μh. This means the weight of the most of the input vectors having weight
≤ d should be in supp(h). So we attempt to get an affine transformation for a
Boolean function f such that the transformation increases the probability that
an input vector, having output 1, will be translated to a low weight input vector.

Consider h(V x + v) = f(x), where V is an n × n binary matrix and v =
(v1, v2, . . . , vn) ∈ {0, 1}n. Suppose r1, r2, . . . , rn ∈ {0, 1}n are the row vectors
of the transformation V . By V x + v = y we mean V xtr + v = ytr, where
x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ {0, 1}n. Given an x, we find a y by
this transformation and then h(y) is assigned to the value of f(x). If f(x) = 1,
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we like that the corresponding y = V x+ v should be of low weight. The chance
of (y1, y2, . . . , yn) getting low weight increases if the probability of yi = 0, 1 ≤
i ≤ n is increased. That means the probability of ri · (x1, x2, . . . , xn) + vi = 0
for 1 ≤ i ≤ n needs to be increased. Hence we will like to choose a linearly
independent set ri ∈ {0, 1}n, 1 ≤ i ≤ n and v ∈ {0, 1}n such that the probability
ri · (x1, x2, . . . , xn) + bi = 0, 1 ≤ i ≤ n is high when (x1, x2, . . . , xn) ∈ supp(f).
Since we use the relations h(V x+ v) = f(x), and h(x) = f(Bx+ b), that means
B = V −1 and b = V −1v.

The heuristic is presented below. By bin[i] we denote the n-bit binary repre-
sentation of the integer i.

Heuristic 1

1. loop = 0; max = |{x|f(x) = 1, wt(x) ≤ d}|;
2. For (i = 1; i < 2n; i+ +) {

(a) t = |{x = (x1, x2, . . . , xn) ∈ supp(f)|bin[i] · x = 0}|
(b) if t ≥ wt(f)

2 , val[i] = t and ai = 0 else val[i] = wt(f)− t and ai = 1.
}

3. Arrange the triplets (bin[i], ai, val[i]) in descending order of val[i].
4. Choose suitable n many triplets (rj , vj , kj) for 1 ≤ j ≤ n such that rjs are

linearly independent and kj’s are high.
5. Construct the nonsingular matrix V taking rj , 1 ≤ j ≤ n as j-th row and

v = (v1, v2, . . . , vn).
6. Increment loop by 1; while (loop < maxval)

(a) B = V −1, b = V −1v.
(b) if max < |{x|f(Bx+ b) = 1, wt(x) ≤ d}| replace f(x) by f(Bx+ b) and

update max by |{x|f(Bx+ b) = 1, wt(x) ≤ d}|.
(c) Go to step 2.

The time complexity of this heuristic is (maxval × n22n). See the follow-
ing example, where we trace Heuristic 1 for the 5-variable function f given in
Example 2.

Example 3. We have f = 01010110010101100101011001101001 and check that
|{x ∈ {0, 1}5 | f(x) = 1 & wt(x) ≤ 2}| = 6. In step 2, we get (val[i], ai) for
1 ≤ i ≤ 31 as 1 : (11, 1), 2 : (8, 1), 3 : (11, 1), 4 : (8, 1), 5 : (11, 1), 6 : (8, 1),
7 : (9, 0), 8 : (8, 1), 9 : (9, 1), 10 : (8, 1), 11 : (9, 1), 12 : (8, 1), 13 : (9, 1),
14 : (8, 1), 15 : (11, 0), 16 : (8, 1), 17 : (9, 1), 18 : (8, 1), 19 : (9, 1), 20 : (8, 1),
21 : (9, 1), 22 : (8, 1), 23 : (11, 0), 24 : (8, 1), 25 : (9, 0), 26 : (8, 1), 27 : (9, 0),
28 : (8, 1), 29 : (9, 0), 30 : (8, 1), 31 : (11, 1). Then after ordering according the
value of val[i], we choose the row of matrix V as the 5-bit binary expansion
of 1, 3, 5, 15 and 7 with frequency values of 0’s as 11, 11, 11, 11, 9 respectively
and v = (a1, a3, a5, a15, a7) = (1, 1, 1, 1, 0). Here the matrix V is a nonsingular
matrix. The new function is g = f(Bx+ b), where B = V −1, b = V −1v and one
can check that |{x ∈ {0, 1}5 | g(x) = 1 & wt(x) ≤ 2}| = 16.
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Experiments with this heuristic on different Boolean functions provide very pos-
itive results. First of all we have considered the functions which are random
affine transformations g(x) of the function [19], fs(x) = 1 for wt(x) ≤ �n−1

2 	 and
fs(x) = 0 for wt(x) ≥ �n+1

2 	, which has no annihilator having degree ≤ �n−1
2 	.

This experimentation has been done for n = 5 to 16. For all the cases running
Heuristic 1 on g(x) we could go back to fs(x). Then we have randomly changed
2ζn bits on the upper half of fs(x) (0.5 ≤ ζ ≤ 0.8 at steps of 0.1) to get f ′

s(x) and
then put random transformations on f ′

s(x) to get g(x). Running Heuristic 1, we
could also go back to f ′

s(x) easily. For experiments we have taken maxval = 20.
The important issue is exactly when this matrix size is asymptotically reduced

than the trivial matrix size wt(f) ×
∑d

i=0

(
n
i

)
if one writes down the equations

by looking at the truth table of the function only. This happens only when
μf is very close to

∑d
i=0

(
n
i

)
. Let

∑d
i=0

(
n
i

)
− μf ≤ 2ζn, where ζ is a constant

such that 0 < ζ < 1. In that case the matrix size will be less than or equal to
(wt(f) + 2ζn −

∑d
i=0

(
n
i

)
) × 2ζn. When d = �n

2 	 and n odd,
∑d

i=0

(
n
i

)
= 2n−1.

Thus for a balanced function, the size of the matrix becomes as low as 2ζn×2ζn.
We summarize the result as follows.

Theorem 4. Predetermine a constant ζ, such that 0 < ζ < 1. Consider any
Boolean function f(x) ∈ Bn for which there exist a nonsingular binary matrix B
and an n-bit vector b such that

∑d
i=0

(
n
i

)
−|{x|f(Bx+b) = 1, wt(x) ≤ d}| ≤ 2ζn.

If B and b are known, then the size of the matrix UAr will be less than or equal
to (wt(f) + 2ζn −

∑d
i=0

(
n
i

)
) × 2ζn which is asymptotically reduced in size than

wt(f)×
∑d

i=0

(
n
i

)
.

That B, b can be known is quite likely from the experimental results available
running Heuristic 1.

Next we have run our heuristics on randomly chosen balanced functions. The
number of inputs up to weight d for a Boolean function is

∑d
i=0

(
n
i

)
. Thus for a

randomly chosen balanced function, it is expected that there will be 1
2

∑d
i=0

(
n
i

)
many inputs up to weight d for which the outputs are 1. Below we present
the improvement (on an average of 100 experiments in each case) we got after
running Heuristic 1 with maxval = 20 for n = 12 to 16.

Table 1. Efficiency of Heuristic 1 on random balanced functions

n 12 13 14 15 16

d 3 4 5 4 5 6 4 5 6 5 6 7 5 6 7∑d
i=0

(
n
i

)
299 794 1586 1093 2380 4096 1471 3473 6476 4944 9949 16384 6885 14893 26333

	 1
2
∑d

i=0

(
n
i

)

 149 397 793 541 1190 2048 735 1736 3238 2472 4974 8192 3442 7446 13166

Heuristic Value 228 535 964 717 1438 2322 957 2051 3648 2917 5525 8811 3995 8194 14114

It should be noted that after running our heuristic on random balanced func-
tions, the improvement is not extremely significant. There are improvements
as we find that the the values are significantly more than 1

2

∑d
i=0

(
n
i

)
(making

our algorithm efficient), but the value is not very close to
∑d

i=0

(
n
i

)
. This is
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not a problem with the efficiency of the heuristic, but with the inherent prop-
erty of a random Boolean function that there may not be an affine transfor-
mation at all on f(x) such that |{x|f(Bx + b) = 1, wt(x) ≤ d}| is very high.
In fact we can show that for highly nonlinear functions f(x), the increment
from |{x|f(x) = 1, wt(x) ≤ d}| to |{x|f(Bx + b) = 1, wt(x) ≤ d}| may not be
significant for any B, b. The reason for this is as follows.

Proposition 2. Let f ∈ Bn be a balanced function (n odd) having nonlinearity
nl(f) = 2n−1 − 2

n−1
2 . Then for any nonsingular n × n matrix B and any n-bit

vector b, 2n−1 − |{x|f(Bx+ b) = 1, wt(x) ≤ n−1
2 }| ≥

1
2

(n−1
n−1

2

)
− 2

n−1
2 −1.

Proof. Let f ∈ Bn be a balanced function (n odd) having nonlinearity nl(f) =
2n−1 − 2

n−1
2 . Let g ∈ Bn be the function such that g(x) = 1 for wt(x) ≤ n−1

2 .
By [19, Theorem 3], nl(g) = 2n−1 −

(n−1
n−1

2

)
. Now we like to find out a function

h(x) = f(Bx + b) such that |{x|h(x) = 1, wt(x) ≤ n−1
2 }| is high. Consider the

value T = |supp(g) ∩ supp(h)|, i.e., T = |{x : h(x) = 1 & wt(x) ≤ n−1
2 }|.

Without loss of generality consider T ≥ 2n−2. Hence, d(h, g) = 2(2n−1 − T ) =
2n−2T . Now, nl(f) = nl(h) ≤ nl(g)+d(h, g) = (2n−1−

(n−1
n−1

2

)
)+2n−2T . Thus,

2n−1− 2
n−1

2 ≤ (2n−1−
(n−1

n−1
2

)
) + 2n− 2T , i.e., 2n−1− T ≥ 1

2

(n−1
n−1

2

)
− 2

n−1
2 −1. ��

Thus if one predetermines a ζ, then for a large n we may not satisfy the con-

dition that
∑n−1

2
i=0

(
n
i

)
− |{x|f(Bx + b) = 1, wt(x) ≤ d}| ≤ 2ζn. In this direction

we present the following general result where the constraint of nonlinearity is
removed.

Theorem 5. Suppose f ∈ Bn be a randomly chosen balanced function. Then
the probability to get an affine transformation such that

|{x|f(Bx+ b) = 1, wt(x) ≤ �n− 1
2
	}| >

n−1
2 �∑

i=0

(
n

i

)
− k is

1. less than
(n+1)2n∑k−1

i=0 (2n−1

i )
2

( 2n

2n−1) for n odd.

2. less than
(n+1)2n∑k−1

i=0 (
∑ n

2 −1
j=0 (n

j)
i

)(
2n−∑ n

2 −1
j=0 (n

j)
i+ 1

2 (n
n
2
) )

( 2n

2n−1)
for n even.

Proof. First we prove it for n odd. The number of balanced functions h ∈ Bn

such that |{x|h(x) = 1, wt(x) ≤ n−1
2 }| > 2n−1 − k is

∑k−1
i=0

(
2n−1

i

)2
(consider

the upper and lower half in the truth table of the function). So, there will be at

most
∑k−1

i=0

(
2n−1

i

)2
many affinely invariant classes of such functions. Further the

total number of balanced function is
(

2n

2n−1

)
. Hence the total number of affinely

invariant classes of balanced function is ≥ ( 2n

2n−1)
2n(2n−1)(2n−21)...(2n−2n−1) >

( 2n

2n−1)
(n+1)2n .

Hence the probability of a randomly chosen balanced function will be function
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type h is bounded by
(n+1)2n∑k−1

i=0 (2n−1

i )
2

( 2n

2n−1)
. Similarly, the case for n even can be

proved. ��

If one takes k ≤ 2
3
4 n, then it can be checked easily that the probability decreases

fast towards zero as n increases. Thus for a random balanced function f , the
probability of getting an affine transformation (which generates the function h

from f) such that |{x|f(Bx + b) = 1, wt(x) ≤ �n−1
2 	}| >

∑n−1
2 �

i=0

(
n
i

)
− 2

3
4 n is

almost improbable.
Thus when one randomly chosen balanced function is considered, using the

strategy of considering the function after affine transformation, one can indeed
reduce the matrix size by constant factor, but the reduction may not be sig-
nificant in asymptotic terms when the annihilators at the degree of �n−1

2 	 are
considered for large n.

5 Conclusion

In this paper we study how to reduce the matrix size which is involved in find-
ing the annihilators of a Boolean function. Our results show that considerable
reduction in the size of the matrix is achievable. We identify the classes where
it provides asymptotic improvement. We also note that for randomly chosen
balanced functions, the improvement is rather constant than asymptotic. The
reduction in matrix size helps in running the actual annihilator finding steps
by Gaussian elimination method. Though our method is less efficient in general
than the recently known efficient algorithms [1,20] to find the annihilators, this
work helps in theoretically understanding the structure of the matrix involved.

Acknowledgment. We like to acknowledge one of the anonymous reviewers for
pointing out some problems in Heuristic 1 in the submitted version of this paper;
this is corrected in this final version.
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Abstract. In this paper, we study single-cycle T-functions which have
important applications in new cryptographic algorithms. We present the
algebraic normal form (ANF) of all single-cycle T-functions and the enu-
meration of single-cycle functions, which reveal many mysterious aspects
of such functions. We also investigate the linear complexity and the k-
error complexity of single-cycle T-functions when n = 2t, the results also
reflect the good stability of single-cycle T-functions.

Keywords: Cryptography, Single-cycle T-function, Algebraic normal
form, Linear complexity, k-error complexity.

1 Introduction

1.1 Single-Cycle T-Functions

Cryptography is the science of protecting information from unauthorized intrud-
ers. In the design of cryptographic transformations such as block ciphers, hash
functions and stream ciphers, T-functions are recently found to be useful tools,
which help to realize fast encryption under integral and logical instructions. A
function from an n-bit input to an n-bit output with the property that the i-
th bit of its outputs depend only on the i least significant bits of its inputs is
called a T-function (short for triangular function) [5,6,7]. A typical example of
T-function is the polynomial P (x) =

∑d
i=0 aixi (mod 2n) with integral coef-

ficients. A T-function can be treated as a multiple outputs Boolean function,
where the i-th coordinate function can be represented in figure 1.

We call a function invertible if it is a one-to-one mapping from one set onto
itself. If an invertible T-function induces a single cycle as the state graph, then
the function is called a single-cycle T-function. The states of a single-cycle T-
function can be shown in figure 2.

� This work was supported by National Natural Science Foundation of China
(90304007) and China Postdoctoral Science Foundation.
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Fig. 1. T-function in Boolean function representation

It should be noted that not all the invertible T-functions are single-cycle ones.
Such an example can be found in RC6 encryption algorithm where the invert-
ible map x −→ x + 2x2 (mod 2n) is not a single-cycle function. This function
has very bad properties in terms of the cycle structure. In fact, for any inte-
ger c, 2

n
2 c is an invariant when n is even and 2

n−1
2 c is an invariant when n is

odd.
The linear feedback shift register (LFSR) based state transform function has

the disadvantage that its initial state cannot be 0, which may lead to some
crucial attacks. One of such example is A5/2 algorithm, which is widely used
in global system of mobile (GSM). Compared with normal LFSR, a single-cycle
T-function can start from state 0, and then goes through all the 2n consequent
states, denoted as T (0), T 2(0), · · · , T 2n−1(0). This is one advantage that an
LFSR does not have. If the state transform functions in stream ciphers are
replaced by single-cycle T-functions, we do not have to worry about the 0 state,
and the period of the single-cycle T-function arrives at the maximum-2n, which
is even larger than that of LFSR based ones-2n − 1. Furthermore, single-cycle
T-function based state transform function can be nonlinear or even no algebraic.
Consequently, Klimov and Shamir proposed the idea to replace linear feedback
shift registers (LFSR) with single-cycle T-functions [5].

1.2 Related Work

Due to the advantages of single-cycle T-functions, it has attracted considerable
attention in the cryptography research community. Benony et al. have given a
method to retrieve internal state of T-function based pseudo-random sequence
generators [1]. Building on T-functions, Hong et al. proposed a new stream ci-
pher [4], which is faster than most stream ciphers available today. Unfortunately,
only a very small number of single cycle T-functions are known currently, and
only characterizations of T-functions in integer residue rings Zn appeared in the
literature [5,6,7].
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Fig. 2. The states of a single-cycle T-function

1.3 Our Contributions

In this paper, using the techniques of Boolean function, we first give the al-
gebraic normal form (ANF) of all single-cycle T-functions in Boolean function
representation. Based on the ANF of single-cycle T-functions, we determine the
number of such functions.

Considering that an important application of single-cycle T-functions is in the
constructions of synchronous stream ciphers, the concepts of linear complexity
and k-error linear complexity are very useful in the study of the security of
stream ciphers, we calculate the linear complexity and the k-error complexity
of single cycle T-function π with n = 2t. Its linear complexity is about one half
of the“length” of the whole sequence, and the minimum value of k such that
LCk(π) < LC(π) is equal to 2n−1, which shows that single-cycle T-function has
good stability.

2 The Algebraic Normal Form (ANF) of Single-Cycle
T-Function

We first introduce a few definitions. Let GF (2) be the binary field, n an arbitrary
positive integer. A function from GFn(2) into GF (2) is called a Boolean function
of n variables. It can be written as f(x) = f(x1, · · · , xn). For any Boolean
function f(x), it can always be written in an algebraic normal form(ANF) as

c0 + c1x1 + · · ·+ cnxn + c12x1x2 + c13x1x3 + · · ·+ c12···nx1 · · ·xn,

where, each xi1 , xi2 , · · · , xij is called a term of degree j, and ci1i2···ij ∈ GF (2) is
the coefficient of the term in the polynomial expression of f(x). The algebraic
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degree of f(x), denoted by deg(f), is defined as the highest degree of its terms
with a nonzero coefficient. The function f is called balanced if the size of {a ∈
GFn(2) | f(a) = 1} is equal to 2n−1. We will denote Fn the set of all Boolean
functions of n variables.

A mapping from GFn(2) to GFm(2) is called a vector Boolean function, or
an (n,m)-Boolean function. It is easy to see that a T-function is an (n, n)-
Boolean function. We also call it an (n, n) T-function. In this paper, we are
mainly interested in single-cycle T-functions, i.e. the outputs of such functions
go through all the possible vectors of GFn(2) from any starting point, including
the all-zero vector, see figure 2.

Lemma 1. [11] Let π = (ϕ1, · · · , ϕn) be a single-cycle T-function. Then the first
i coordinates of π forms a new vector Boolean function of i variables [(π)]1→i =
(ϕ1, · · · , ϕi), and it is a single-cycle T-function of period 2i.

Lemma 2. [6] An (n, n) T-function is invertible if and only if its ANF has the
form

π(x) = (ϕ1(x), ϕ2(x), ϕ3(x), · · · , ϕn(x))
= (x1 + a, x2 + f2(x1), x3 + f3(x1, x2), · · · , xn + fn(x1, · · · , xn−1)),

where a = 0 or 1, fi, i = 2, · · · , n are Boolean functions.

Lemma 3. Let ψ(x) ∈ Fn. Then deg(ψ(x)) < n if and only if∑
x∈GF n(2)

ψ(x) = 0 (mod 2). (1)

We are now ready to give the main theorem of this paper on the ANF of single-
cycle T-functions.

Theorem 1. Let π = (ϕ1, · · · , ϕn) be an invertible T-function over GFn(2).
Then π is a single-cycle T-function if and only if its ANF has the following
form

π(x) = (ϕ1, · · · , ϕn)
= (x1 + 1, x2 + x1 + ψ2, x3 + x1x2 + ψ3, x4 + x1x2x3 + ψ4, · · · ,
xn + x1x2 · · ·xn−1 + ψn(x1, x2, · · · , xn−1)), (2)

where ϕi = xi + x1 · · ·xi−1 + ψi(x1, · · · , xi−1), deg(ψi) ≤ i− 2, i ≥ 2

Proof. (Necessity) It only needs to prove that for any single-cycle T-function π,
its coordinate function can be expressed as

ϕi = xi + x1 · · ·xi−1 + ψi(x1, · · · , xi−1), deg(ψi) ≤ i− 2.

When n = 1, the only single-cycle T-function is [π(x)]1 = x1 + 1. Hence
the necessity holds for the case of n = 1. Assume the conclusion is true for
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n ≤ k, i.e. for any i ≤ k, ϕi can always be expressed as xi + x1 · · ·xi−1 +
ψi(x1, · · · , xi−1), deg(ψi ≤ i− 2). We now prove that when n = k+ 1, ϕk+1 can
be expressed as

ϕk+1(x1, · · · , xk+1) = xk+1 + x1 · · ·xk + ψk+1(x1, · · · , xk), deg(ψk+1) ≤ k − 1.

Since π is single-cycled, by Lemma 1, the first k coordinate functions (ϕ1, · · · , ϕk)
form a new single-cycle T-function of period 2k. Denote (ϕ1, · · · , ϕk) by [π]1→k.
Consider the consequent 2k states of [π]1→k starting from the initial state of 0:(

0, [π(0)]1→k, [π2(0)]1→k, · · · , [π2k−1(0)]1→k

)
.

Since [π]1→k defines a cycle of length 2k, we see that the vector [πj(0)]1→k(0 ≤
j ≤ 2k − 1) is a permutation of all the elements in GF k(2). Let [πj(0)]i be the
i-th bit of πj(0). By Lemma 2, we can write

ϕk+1(x1, · · · , xk+1) = xk+1 + ax1x2 · · ·xk + ψk+1(x1, x2, · · · , xk),

where a = 0 or 1, ψk+1 is a Boolean function with deg(ψk+1) < k. Hence

[π2k

(0)]k+1 = ϕk+1(π2k

(0)) = [π2k−1(0)]k+1 + a[π2k−1(0)]1 · · ·

[π2k−1(0)]k + ψk+1([π2k−1(0)]1→k)

[π2k−1(0)]k+1 = ϕk+1(π2k−1(0)) = [π2k−2(0)]k+1 + a[π2k−2(0)]1 · · ·

[π2k−2(0)]k + ψk+1([π2k−2(0)]1→k)
· · ·

[π2(0)]k+1 = ϕk+1(π2(0)) = [π(0)]k+1 + a[π(0)]1 · · · [π(0)]k + ψk+1([π(0)]1→k).

From the above expressions, replace [π2k−1(0)]k+1 in the first expression by the
second expression, and [π2k−2(0)]k+1 in the resulting expression by the third
expression, and do the replacement recursively, eventually we get the following
expression:

[π2k

(0)]k+1

= ϕk+1(π2k−1(0))

= [π2k−1(0)]k+1 + a[π2k−1(0)]1 · · · [π2k−1(0)]k + ψk+1([π2k−1(0)]1→k)

= [π2k−2(0)]k+1 + a[π2k−2(0)]1 · · · [π2k−2(0)]k + ψk+1([π2k−2(0)]1→k)

+a[π2k−1(0)]1 · · · [π2k−1(0)]k + ψk+1([π2k−1(0)]1→k)
= · · ·

= [0]k+1 +
2k−1∑
j=0

(
a[πj(0)]1 · · · [πj(0)]k + ψk+1([πj(0)]1→k)

)
= 0 + a

∑
s∈GF k(2)

s1 · · · sk +
∑

s∈GF k(2)

ψk+1(s), (3)
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where s = (s1, · · · , sk). Note that s1 · · · sk 
= 0 holds only when s1, · · · , sk are
all equal to 1. Hence we have∑

s∈GF k(2)

s1 · · · sk = 1, s = (s1, · · · , sk). (4)

Since deg(ψ(x)) < k, by Lemma 3 we have∑
s∈GF k(2)

ψk+1(s) = 0 (mod 2). (5)

Plug (4) and (5) into (3) we obtain that:

[π2k

(0)]k+1 = a.

Since [π]1→k is a single-cycle T-function of period 2k, it is known that its (2k+1)-
th state must be the same as the initial state, i.e.

[π2k

(0)]1→k = [π0(0)]1→k = (0, 0, · · · , 0)︸ ︷︷ ︸
k

.

We must have [π2k

(0)]k+1 = a 
= 0 in view of π is single-cycled, otherwise, we
would have [π2k

(0)] = 0, which induces that [π]1→k+1 has a period no more than
2k contradicting with the fact that the period of π1→k+1 is 2k+1. Thus a = 1.
Note that any Boolean function of k variables with algebraic degree less than k
satisfies equation (1), it is known that ψk+1 can be chosen at random from those
Boolean functions of variables x1, · · · , xk and with algebraic degree less than k.
This proves that ϕk+1 can be written as

xk+1 + x1x2 · · ·xk + ψn(x1, · · · , xk), deg(ψk+1) ≤ k − 1.

Therefore, for any positive integer n, the necessity holds.
(Sufficiency) Again we use induction on n to prove the sufficiency. When

n = 1, we must have ϕ1(x) = [π(x)]1 = x1 + 1, and it is obvious that f(x)
is single-cycled in the sense of modulo 2. Assume the conclusion is true when
n = k, i.e., the first k coordinate functions in equation (2) form a single-cycle
T-function of period 2k. Similar to the proof of necessity, it is easy to prove that

[π2k

(0)]k+1 =
∑

s∈GF k(2)

ψk+1(s) +
∑

s∈GF k(2)

s1 · · · sk.

Since deg(ψk+1) < k, by Lemma 3 we have
∑

s∈GF k(2)

ψk+1(s) = 0. And from∑
s∈GF k(2)

s1 · · · sk = 1, we obtain that [π2k

(0)]k+1 = 1. Since [π(x)]1→k is a

single-cycle T-function of period 2k, it is known that the period of [π(x)]1→k+1

is at least 2k. Note that the 2k-th state is not the same as the initial state (0),
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and the period of [π(x)]1→k+1 must be a multiple of the period of [π(x)]1→k

which is 2k. Thus we can infer that the period of [π(x)]1→k+1 must be 2k+1, i.e.,
[π(x)]1→k+1 is a single-cycle T-function. This proves the sufficiency for the case
of n = k+ 1, and by the principle of induction, the conclusion is true in general
case.

Theorem 1 shows that the i-th output bit of a single-cycle T-function is xi +
x1 · · ·xi−1 + · · · , which is a non-degenerate function of the inputs on positions
1, 2, · · · , i, and is independent of the input bits on positions i+ 1, · · · , n. In this
sense we say that an output bit of a single-cycle T-function does not reveal any
information about the most significant bits of its inputs, but contains all the
information about its least significant bits of its inputs.

In order to demonstrate what a single-cycle T-function looks like, we now give
a small example.

Example 1. Let π(x) = (x1 + 1, x2 + x1 + 1, x3 + x1x2, x4 + x1x2x3 + 1), then
π is a single-cycle T-function. The state transform of π(x) over GF 4(2) is 0 �→
11 �→ 6 �→ 13 �→ 4 �→ 15 �→ 10 �→ 1 �→ 8 �→ 3 �→ 14 �→ 5 �→ 12 �→ 7 �→ 2 �→ 9 �→ 0.

From the ANF of single-cycle T-functions, we can deduce the enumeration of
them.

Theorem 2. The number of single-cycle (n, n) T-functions is

2(2−1)+(22−1)+(23−1)+···+(2n−1−1) = 22n−n−1.

Proof. The conclusion follows from the observation that ψi(x1, · · · , xi−1), i =
2, · · · , n can be any of the Boolean functions of i − 1 variables with algebraic
degree being less than i− 1, and there are 22i−1 such Boolean functions.

Note that the number of m-sequences with order n is ϕ(2n − 1) (ϕ(·) is Euler
function) and the number of M -sequences with order n is 22n−1 − n. Compared
with m-sequences and M -sequences, the number of single-cycle T-functions is
much larger. The existence of such functions thwarts against the keystreams by
exhaustive search.

3 The Linear Complexity and k-Error Linear Complexity
of Single-Cycle T-Function

From an engineering standpoint, because of the compatibility with the binary
{0, 1} nature of data representation in electronic hardware, the preferred alpha-
bet sizes are p = 2, 4, 8 etc, which are all powers of 2. This gives us the motivation
to describe the linear complexity of single-cycle T-function, and calculate the k-
error linear complexity of single-cycle T-function, when the variables number is
a power of 2. In what follows, n is assumed to be a power of 2, that is, there is
an positive integer t such that n = 2t.
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3.1 The Linear Complexity of Single-Cycle T-Function

Linear complexity is an important cryptographic criterion of stream ciphers. The
linear complexity of a sequence (s), denoted by LC(s), is defined as the length
of the shortest LFSR that generates (s). In stream ciphers, periodic sequences
that are suitable as keystreams must have large linear complexity to thwart an
attack by the Berlekamp-Massey algorithm[9,10].

Given a concrete binary sequence (s) of length 2m, its linear complexity LC(s)
can efficiently be determined by the Chan-Games algorithm:

Lemma 4 (Chan-Games algorithm). [3] Let sm = (s0, s1, · · · , s2m−1) be a
binary vector of length 2m, and let the sequence (s) be defined by appending
copies of sm. We decompose sm into its left and right halves by

L(sm) = (s0, s1 · · · , s2m−1−1)
R(sm) = (s2m−1 , s2m−1+1, · · · , s2m−1).

and write sm = (L(sm)
... R(sm)). Form d = R(sm) +L(sm), where the addition

is performed element wise module 2, so that (d) ∈ B(2m−1), we have
a)If d = 0, then LC(s) = LC(L(sm));
b)If d 
= 0, then LC(s) = 2n−1 + LC(d).

Where B(2m−1) denotes the set of binary sequences of period 2m−1.

Remark 1. It should be mentioned that Lemma 4 can be applied to a periodic
sequence with period 2m directly. Even when the sequence s may have a smaller
period than 2m. So we can start the algorithm with any period of s, although it
is not the minimum. If 2m is not the minimum, then the linear complexity of s
equals to the linear complexity of the 2m−1- periodic sequence L(sm). If 2m−1

is not the minimum, then the linear complexity of the sequence s equals to the
linear complexity of the 2m−2- periodic sequence L(L(sm)), and so on.

Suppose that π(x) is a single-cycle T-function of 2n known consequent states.
Write these states as row vectors and form a matrix as follows:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

· · · · · · · · · · · · · · ·
a2n−11 a2n−12 a2n−13 · · · a2n−1n

· · · · · · · · · · · · · · ·
a2n1 a2n2 a2n3 · · · a2nn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let πn be a binary vector of length n× 2n:

πn = (a11, · · · , a1n, a21, · · · , a2n, · · · , a2n−11, · · · , a2n−1n, · · · , a2n1, · · · , a2nn),

and the sequence (π) be defined by appending copies of πn, then (π) is an n×2n-
periodic sequence.



The ANF, LC and k-Error Linear Complexity of Single-Cycle T-Function 399

Theorem 3. If n = 2t, then the linear complexity of (π) is n× 2n−1 + n.

Proof. Since when n = 2t, the period of (π) is a power of 2, hence we can
calculate the linear complexity of (π) by Lemma 4 and Remark 1. Here

L(πn) = (a11, · · · , a1n, · · · , a2n−11, · · · , a2n−1n)
R(πn) = (a2n−1+1 1, · · · , a2n−1+1 n, · · · , a2n1, · · · , a2nn).

L(πn) + R(πn) = (a11 + a2n−1+1 1, · · · , a1n + a2n−1+1 n, · · · , a2n−11 + a2n1, · · · ,
a2n−1n + a2nn), hence each indices of L(πn) +R(πn) formed as aij + ai+2n−1 j .
Since π is single-cycled, aij and ai+2n−1 j are different only when j = n, we have

L(πn) +R(πn) = (0, · · · , 0, 1︸ ︷︷ ︸
n elements

, 0, · · · , 0, 1︸ ︷︷ ︸
n elements

, · · · , 0, · · · , 0, 1︸ ︷︷ ︸
n elements

)

and LC(π) = n×2n

2 + LC(0, · · · , 0, 1︸ ︷︷ ︸
n elements

) = n× 2n−1 + n by Lemma 4.

Theorem 3 shows that when n is large enough, the linear complexity of a single-
cycle T-function is about one half of its “length”.

3.2 The k-Error Linear Complexity of Single-Cycle T-Function

A cryptographically strong sequence should not only have a large linear com-
plexity, but also have a stable linear complexity, by this we mean that by altering
a few terms, it should not cause a significant decrease of the linear complexity.
According to this requirement, the new notation of k-error complexity of pe-
riodic sequences was introduced independently by Stamp and Martin [12] and
Ding, Xiao, and Shan [2].

Definition 1. [2,12] The k-error linear complexity of the periodic sequence
(s) = (s0, s1, · · · , sm−1), denoted LCk(s), is the smallest linear complexity that
can be obtained when any k or fewer of the s′is are altered.

The k-error linear complexity can be interpreted as a worst case measure of the
linear complexity when k or fewer errors occur and hence the terminology k-error
linear complexity. We define minerror(s) as the minimum value of k such that

LCk(s) < LC(s).

In other words, minerror(s) is the smallest Hamming weight of the error vector
E such that

LC(s + E) < LC(s).

E is called a critical error vector for (s) [8].
In [8], Kurosawa et al. established an efficient algorithm for computing the

k-error linear complexity, in the case where (s) is a binary sequence with period
2m, which is an important tool in the rest of our paper.
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Lemma 5. [8] Let s be a binary sequence with period N . If N = 2m, then

minerror(s) = 2wh(N−LC(s)),

where wh(C) denotes the Hamming weight of the binary representation of an
integer C.

Theorem 4. If n = 2t, then minerror(π) = 2n−1 and LCk(π) is equal to
n+ n× 2n−2 for k = minerror(π).

Proof. Here N = n× 2n. From Theorem 3, we have

N − LC(π) = n× 2n − n× 2n

2
− n =

n× 2n

2
− n = n× (2n−1 − 1).

It is obvious that the hamming weight of (2n−1 − 1)is n − 1. Since n = 2t, the
hamming weight of N − LC(π) = n × (2n−1 − 1) is n − 1, too. Hence, from
Lemma 5, minerror(π) = 2n−1.

Next we determine LCk(π) for k = minerror(π). Since L(πn)+R(πn) is 2n−1

copies of 0, · · · , 0, 1, its length is n×2n

2 . After changing every n-th bit of L(πn)+
R(πn), we obtain a zero vector. So ( 0, 0, · · · , 0︸ ︷︷ ︸

n×2n−1 elements

, 0, · · · , 0, 1, · · · , 0, · · · , 0, 1)

is one of the critical error vectors of (π), and

LCk(π) = LC(π + E) = LC(L(πn)) = LC(L(L(πn) +R(L(πn)) +
N

4

We determine L(L(πn)+R(L(πn) first. For π is single cycled, the n-th component
of the first 2n−1 states of π are the same. Their first n− 1 component run over
the states of [(π)]1→n−1, similar to the reason for the form of L(πn) +R(πn) in
the proof Theorem 3, we can get

L(L(πn)) +R(L(πn)) = (0, · · · , 0, 1, 0︸ ︷︷ ︸
n elements

, 0, · · · , 0, 1, 0︸ ︷︷ ︸
n elements

, · · · , 0, · · · , 0, 1, 0︸ ︷︷ ︸
n elements

).

And,

LC(π+E)=LC(L(πn))=LC(L(L(πn))+R(L(πn))+
N

4
= n+

N

4
= n+n×2n−2.

4 Conclusion

In this paper, we give an algebraic normal form (ANF) of single-cycle T-functions
which reveals the algebraic structure of such function. Based on this ANF rep-
resentation of the single-cycle T-function, we also give the enumeration of such
functions. It should be remarkable that such functions are more powerful than
m-sequences and M -sequences in stream ciphers. We also determine the linear
complexity and the k-error complexity of single-cycle T-function whose variable-
number is a power of 2. Either the enumeration or the stability of the single-cycle
T-function indicates that the applications of such function cannot be replaced
by m or M -sequences.
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Abstract. In this paper the concept of partially perfect nonlinear (PPN)
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and is used to construct a new class of Boolean functions with good cryp-
tographic properties. The construction is a composition of a PPN function
and a Boolean function. The nonlinearity, correlation immunity, propaga-
tion criterion, and other cryptographic properties of the constructed func-
tions are analyzed. In particular, new plateaued functions can be obtained
by the proposed method and the construction of Khoo and Gong in [1] is
improved.

1 Introduction

Boolean functions used in stream cipher systems are required to have good cryp-
tographic properties such as high nonlinearity and high algebraic degree to ensure
the systems are resistant against linear cryptanalysis [2], and correlation immu-
nity to offer protection against correlation attack [3]. Another cryptographic
property is propagation characteristics, which makes the cipher not prone to
differential-like cryptanalysis [4].

Bent functions [5] possess the highest nonlinearity and satisfy the propagation
criterion with respect to all nonzero vectors. However, they are neither balanced
nor any order correlation immune, and they exist only when the number of input
variables is even. These drawbacks prohibit their direct application in practical
systems. Partially Bent functions are a generalization of Bent functions, and they
can be balanced and have a high level of nonlinearity provided their associated
kernels are small [6]. The partially Bent functions include all quadratic functions
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as their subclass, and they share with the latter some nice cryptographic proper-
ties in propagation criterion, balancedness, and correlation immunity. However,
partially Bent functions have nonzero linear structures.

In this paper, we introduce the concept of partially perfect nonlinear (PPN)
function as an extension of partially Bent functions, and we use it to construct a
new class of Boolean functions with good cryptographic properties. The construc-
tion is a composition of a PPN function and a Boolean function. By choosing suit-
able component functions, the composition functions can avoid the drawback of
linear structure of partially Bent functions. We study the cryptographical prop-
erties of the construction such as spectrum values, nonlinearity, algebraic degree,
correlation immunity, and propagation criterion. In particular, the construction
is suitable for generating new balanced plateaued functions with high algebraic
degree, and is an improvement of the construction of Khoo and Gong [1].

The remainder of this paper is organized as follows. Section 2 gives some nec-
essary definitions and preliminary lemmas. In Section 3 we introduce the concept
of PPN function, and in Section 4 we study the cryptographical properties of the
Boolean functions composed by PPN functions and other Boolean functions. A
preliminary result on the algebraic degrees of composition functions is left to the
appendix, since the deduction is long and somewhat technical. The final section
is the conclusion.

2 Preliminaries

Let q = 2l, t be a positive integer, and GF (qt) and GF (q) be the finite fields
with qt and q elements, respectively. Let α1, α2, · · · , αt be a basis of GF (qt) over
GF (q), then GF (qt) can be viewed as a GF (q)-vector space, and each element x
of GF (qt) is uniquely expressed as a linear combination of α1, α2, · · · , αt of the
form

x = x1α1 + x2α2 + · · ·+ xtαt, x1, x2, · · · , xt ∈ GF (q).

Identifying x to (x1, x2, · · · , xt), GF (qt) is identical to GF (q)t, the t-dimensional
GF (q)-vector space. Throughout this paper, we assume this identification.

Let n be a multiple of l. The trace function trn
l (·) from GF (2n) to GF (2l) is

defined by

trn
l (x) =

n/l−1∑
i=0

x2il

, ∀ x ∈ GF (2n).

For details about the properties of the trace function, please refer to [7].
A function f from GF (qm) to GF (q) has a unique polynomial expression of

the form

f(x) =
qm−1∑
s=0

asx
s, ∀x ∈ GF (qm), (1)
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where the coefficients as ∈ GF (qm). The function f has a unique algebraic
expression of the form

f(x1, · · · , xm) =
q−1∑
i1=0

· · ·
q−1∑

im=0

ci1,···,imx
i1
1 · · ·xim

m , ∀x1, · · · , xm ∈ GF (q) (2)

with coefficients ci1,···,im ∈ GF (q). The algebraic degree of f is defined as
deg(f) = max{i1+· · ·+im : ci1,···,im 
= 0}. It is also equal to max{wq(s) : as 
= 0}
[8], where wq(s) is the sum of the coefficients in the q-adic expression of s.

Throughout the paper, Boolean functions always specifically mean functions
from GF (2)n to GF (2) for an integer n (n variable Boolean functions). For any
Boolean function g defined on GF (q)t (it is an tl variable Boolean function), its
Walsh transform ĝ is defined by

ĝ(λ) =
∑

x∈GF (q)t

(−1)g(x)+trl
1(λ·x), ∀λ ∈ GF (q)t, (3)

where
λ · x = λ1x1 + · · ·+ λtxt ∈ GF (q)

is the dot product of λ = (λ1, · · · , λt) and x = (x1, · · · , xt) ∈ GF (q)t. The set of
all Walsh transform values of g is called the spectra of g. The function g is called
Bent if ĝ(λ) = ±q t/2 for all λ ∈ GF (q)t.

Bent functions achieve optimum nonlinearity, however, being not balanced
they are improper for direct cryptographic use. Moreover, they exist only in
even dimensions. This led cryptographers to search for new classes of Boolean
functions whose elements still have good nonlinearities and can be balanced for
both odd and even dimensions. The class of partially Bent functions was first
investigated by Carlet [6]. A function f : GF (2)t → GF (2) is called partially
bent if there exist a linear function L on GF (2)t, two GF (2)-subspaces E and F
of GF (2)t, such that

(1) GF (2)t is the direct sum of E and F ;
(2) f |E = p, the restriction of f to E, is bent; and
(3) for all x ∈ E and y ∈ F , f(x+ y) = p(x) + L(y).

The class of plateaued functions is an extension of the notion of partially Bent
function. A function f : GF (2)t → GF (2) is called plateaued [9] if f̂(λ) = 0 or
±2u for all λ ∈ GF (2)t, where u is a positive integer.

Let f and f ′ be two functions from GF (q)t to GF (q). The Hamming distance
between f and f ′, denoted by d(f, f ′), is defined by

d(f, f ′) = |{x ∈ GF (q) | f(x) 
= f ′(x)}|. (4)

One way measuring the nonlinearity of f is to use the minimum distance be-
tween f and all affine functions from GF (q)t to GF (q), namely, the nonlinearity
of f is defined as

Nf = min
a∈A

d(f, a), (5)
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where A is the set of all affine functions from GF (q)t to GF (q). The measure is
related to linear cryptanalysis [2]. When l = 1, i.e., q = 2, by Eq. (3), one has

Nf = 2t−1 − 2−1 · max
λ∈GF (2)t

|f̂(λ)|. (6)

Another measure of the nonlinearity of functions is related to differential
cryptanalysis [4] and it uses difference operator, Dα(f(x)) = f(x + α) − f(x).
Define

Pf = max
0�=α∈GF (q)t

max
β∈GF (q)

Pr(Dαf(x) = β). (7)

f is a perfect nonlinear function or has perfect nonlinearity if Pf = q−1 [10].
Perfect nonlinear functions have the following properties, which are related to

our sequel analysis.

Lemma 1 ([10]): Let f : GF (q)t → GF (q) be a perfect nonlinear function and
g : GF (q) → GF (2) be an onto linear function. Then the composition of f and
g, g ◦ f , is a perfect nonlinear function from GF (q)t to GF (2). In particular, for
any v ∈ GF (q)∗, the function trl

1[vf(x)] is a perfect nonlinear function.

Lemma 2 ([10]): If g : GF (q) → GF (2) is a perfect nonlinear function, then
|ĝ(u)| = q1/2 for all u ∈ GF (q). In other words, g is a Bent function and l is even.

We list the concepts of correlation immunity, propagation criterion, and linear
structure for Boolean functions as follows. See [11,12,13,14,15] for their crypto-
graphic significance.

There exist several equivalent definitions for correlation immune functions
[11,12,13]. Let g be a Boolean function defined on GF (q). g is called k-order
correlation immune (k-CI) if ĝ(α) = 0 for all α ∈ GF (q) with 1 ≤ w2(α) ≤ k,
where α is regarded as an l-dimensionalGF (2)-vector and w2(α) is the Hamming
weight of α. Furthermore, g is called k-resilient if it is balanced and k-CI.

The concept of propagation criterion is introduced in [14] as a generaliza-
tion of strict avalanche criterion (SAC) [15]. A function g is said to satisfy the
propagation criterion with respect to α if Δg(α) = 0, where α ∈ GF (q) and

Δg(α) =
∑

z∈GF (q)

(−1)g(z)+g(z+α). (8)

Furthermore, g is said to satisfy propagation criterion of degree k if it satisfies
the propagation criterion with respective to every nonzero vector with Hamming
weight not exceeding k. By Eq. (8), Δg(α) = 0 if and only if g(z) + g(z + α) is
a balanced function.

An element α is called a linear structure of g if |Δg(α)| = q, or equivalently,
g(z) + g(z + α) is a constant function. All linear structures of g form a GF (2)-
linear subspace of GF (q), whose dimension is called the linearity of g.

The recent algebraic attacks on stream ciphers based on linear feedback shift
registers [16] lead to a new design criterion for cryptographical functions: a
Boolean function should not have low degree multiples. The immunity of a
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Boolean function against algebraic attacks can be measured by algebraic im-
munity [17,18], which is extended for functions over any finite fields [19].

The algebraic immunity of the function f : GF (q)t → GF (q) is defined as

AI(f) = min{deg(g) ≥ 1 | g : GF (q)t → GF (q), f ∗ g = 0 or (f q−1− 1) ∗ g = 0},

where f∗g = f(x)g(x), and f∗g = 0 means that f(x)g(x) = 0 for all x ∈ GF (q)t.
Lemma 3 ([19]): Let f : GF (q)t → GF (q). Then there is a function g : GF (q)t →
GF (q), 1 ≤ deg(g) ≤ �(q − 1)t/2� such that either f ∗ g = 0 or deg(f ∗ g) ≤
�(q − 1)t/2	. In particular, AI(f) ≤ �(q − 1)t/2	.

3 Partially Perfect Nonlinear Functions

Definition 4: A function f : GF (q)t → GF (q) is called partially perfect nonlinear
(PPN) if there exist a linear function L on GF (q)t, two GF (q)-subspaces E and
F of GF (q)t, such that

(1) GF (q)t is the direct sum of E and F ;
(2) f |E = p, the restriction of f to E, is perfect nonlinear; and
(3) for all x ∈ E and y ∈ F , f(x+ y) = p(x) + L(y).

When q = 2, PPN functions are exactly partially Bent functions [6]. When
q > 2, we can regard PPN functions as an extension of partially Bent Boolean
functions.

From Definition 4, one can construct a PPN function from a known perfect
nonlinear function by extending the domain of a perfect nonlinear function.
There are many constructions for perfect nonlinear functions [10]. One such
construction is the following

Proposition 5 ([10]): Let m be even and π = (π1, π2, · · · , πm/2) be a permutation
of GF (q)m/2, where πi is the coordinate function of π. Then

p(x1, · · · , xm) = x1π1(xm/2+1, · · · , xm) + x2π2(xm/2+1, · · · , xm)

+ · · ·+ xm/2πm/2(xm/2+1, · · · , xm) + p0(xm/2+1, · · · , xm)
(9)

is a perfect nonlinear function for any function p0 from GF (q)m/2 to Fq.

For functions defined by Eq. (9), one has deg(p) ≥ deg(p0). Taking p0 as a
function of high algebraic degree, perfect nonlinear functions with high algebraic
degree is constructed by Proposition 5.

A perfect nonlinear function p from GF (q)m to GF (q) can be easily extended
to a PPN function f defined on GF (q)m+n as follows:

f(x+ y) = p(x) + L(y), ∀x ∈ GF (q)m, ∀ y ∈ GF (q)n, (10)

where L is a linear function defined on GF (q)n.
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The following proposition describes the algebraic immunity property of a PPN
function, which is suggested by a reviewer of this paper.

Proposition 6: Let p1(x) and L1(x) be functions from GF (q)t to GF (q), and L1

be affine. Then, the function f1(x) = p1(x) + L1(x) satisfies

AI(f1) ≤ AI(p1) + q − 1.

In particular, for a PPN function defined as Eq. (10), one has

AI(p)− (q − 1) ≤ AI(f) ≤ �(q − 1)m/2	+ (q − 1).

Proof: Assume that a function p′(x) : GF (q)t → GF (q) satisfies p1 ∗ p′ = 0 or
(pq−1

1 − 1) ∗ p′ = 0. Then, for any affine function L1, if p1 ∗ p′ = 0 then one has
(p1 + L1) ∗ [(Lq−1

1 − 1) ∗ p′] = 0, and if (pq−1
1 − 1) ∗ p′ = 0 then one has

[(p1 + L1)q−1 − 1] ∗ [(Lq−1
1 − 1) ∗ p′]

= [(p1 + L1)q−1 − 1] ∗ [(p1 + L1) ∗ (Lq−1
1 − 1) ∗ pq−2

1 ∗ p′]
= 0

.

Therefore, AI(f1) ≤ AI(p1) + q − 1.
For the PPN function defined by Eq. (10), one has f(x + y) = p(x) + L(y)

and then p(x) = f(x+ y)− L(y). Thus, it is true that

AI(p)− (q − 1) ≤ AI(f) ≤ AI(p) + (q − 1).

By Lemma 3, the proof is finished. ��

When f is a PPN function, by Proposition 6,

AI(f) ≤ �(q − 1)m/2	+ (q − 1).

Thus, as pointed out by the reviewer (also see Lemma 3), the algebraic immu-
nity of a PPN function will not be optimal if n takes a large value, for example,
n ≥ 3. Theorems 8 and 12 below also show that, in order to obtain a compo-
sition function without nonzero linear structure and with high nonlinearity, the
condition n = 1 must be imposed on the PPN function f defined by Eq. (10).
By Proposition 6, the PPN function f has good algebraic immunity property if
n = 1 and the perfect nonlinear function p has high algebraic immunity.

For q = 2, a PPN function is also a partially Bent function, whose algebraic
immunity satisfies AI(p) ≤ AI(f) ≤ AI(p) + 1 [18], which gives a tighter lower
bound than that in Proposition 6.

We establish the following relation between PPN functions and partially Bent
functions.

Proposition 7: Let f(x) : GF (q)t → GF (q) be a PPN function, then g ◦ f is
partially Bent for any nonzero linear function g : GF (q)→ GF (2).

Proof: By Definition 4, there are two subspaces E and F such that GF (q)t =
E ⊕ F and f(x + y) = p(x) + L(y) for all x ∈ E and y ∈ F , where p is
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perfect nonlinear on E and L is linear on F . For any nonzero linear function
g : GF (q)→ GF (2), one has

(g ◦ f)(x + y) = (g ◦ p)(x) + (g ◦ L)(y).

By Lemmas 1 and 2, g ◦ p is Bent. Since g ◦ p is the restriction of g ◦ f to E and
g ◦ L is linear, by the definition of partially Bent function, g ◦ f is a partially
Bent function. ��
Proposition 7 is applicable to derive partially Bent functions from PPN func-
tions. Inspired by Proposition 7, an interesting problem is to study cryptographic
properties of the composition g ◦f for a non-linear function g : GF (q)→ GF (2).
We leave this to the next section.

4 A Class of Boolean Functions and Their Cryptographic
Properties

This section studies a class of Boolean functions constructed by composing a
PPN function and another Boolean function.

Let f be a PPN function from GF (q)t to GF (q) and g be a function from
GF (q) to GF (2). We define a tl variable Boolean function h as

h(x) = g(f(x)). (11)

By Definition 4, we assume without loss of generality that t = m+ n,

f(x, y) = p(x) + L(y)

for all x ∈ GF (q)m, y ∈ GF (q)n, a perfect nonlinear function p(x) and a linear
function L(y). We always assume below L is a nonzero function.

Theorem 8: For any u ∈ GF (q)m and v ∈ GF (q)n, ĥ(u, v) takes a value in the set

{0, qm+n−1ĝ(0), ±qm/2+n−1ĝ(λ) : λ ∈ GF (q)∗}.

Proof: Let L(y) = a1y1 + a2y2 + · · · + anyn, and ai0 
= 0 for some 1 ≤ i0 ≤ n.
Making an invertible linear transformation

yi �→ y′i for i 
= i0, yi0 �→ a−1
i0

(y′i0 +
∑
i�=i0

aiy
′
i)

on y, one has L(y) = y′i0 . Since an invertible linear transformation does not
change the spectra of h(x, y), without loss of generality, we assume L(y) = y1.

For v, y ∈ GF (q)n, one has

trl
1(v · y) = trl

1(
n∑

i=1

viyi) = trl
1[v1(z − p(x))] + trl

1(
n∑

i=2

viyi), (12)
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where z = p(x) + L(y) = p(x) + y1. For fixed x and (y2, · · · , yn), when y1 runs
through all elements of GF (q), z runs through all elements of GF (q) for exactly
once. Thus, from Eq. (12), one has

ĥ(u, v)
=

∑
x∈GF (q)m

∑
y∈GF (q)n

(−1)g(p(x)+L(y))+trl
1(u·x+v·y)

=
∑

x∈GF (q)m

∑
z∈GF (q)

(−1)g(z)+trl
1(u·x)+trl

1[v1(z−p(x))]
∑

y2,···, yn

(−1)
trl

1(
n∑

i=2
viyi)

= p̂v1(u) ĝ(v1)
∑
y2

(−1)tr
l
1(v2y2) · · ·

∑
yn

(−1)tr
l
1(vnyn),

(13)

where pv1(x) = trl
1[v1p(x)] is a Boolean function from GF (q)m to GF (2).

The calculation of ĥ(u, v) is now divided into four cases.
Case 1: u = v = 0. Since pv1(x) = 0 and

∑
yi

(−1)tr
l
1(viyi) = q for 2 ≤ i ≤ n, by

Eq. (13), one has

ĥ(u, v) = qm+n−1ĝ(0).

Case 2: u 
= 0 and v = 0. Since∑
x∈GF (q)m

(−1)tr
l
1[v1p(x)+u·x] =

∑
x∈GF (q)m

(−1)tr
l
1(u·x) = 0,

by Eq. (13), one has ĥ(u, v) = 0.
Case 3: There is an integer i1 with 2 ≤ i1 ≤ n such that vi1 
= 0. Then∑

yi1

(−1)trl
1(vi1yi1) = 0, and ĥ(u, v) = 0.

Case 4: v1 
= 0 and vi = 0 for 2 ≤ i ≤ n. By Lemmas 1 and 2, one has
p̂v1(u) = ±qm/2, which implies

ĥ(u, v) = ±qm/2+n−1ĝ(v1).

��
When g is balanced, i.e., ĝ(0) = 0, we have the following

Corollary 9: Assume g is balanced. Then h(x, y) is balanced and its spectra
takes values in {0,±qm/2+n−1ĝ(λ) : λ ∈ GF (q)∗}. In particular, if n = 1 and
|ĝ(λ)| = 0 or 2(l+c)/2 for all λ ∈ GF (q), where c is 1 if l is odd and 2 otherwise,
then |ĥ(u, v)| = 0 or 2(lt+c)/2.

According to Corollary 9, the composition construction defined by Eq. (11) pro-
vides a method to construct new balanced plateaued functions [1] from known
ones provided a PPN function from GF (q)t to GF (q) exists. This construction
is a generalization of that in [1], since the PPN functions used in [1] are only
quadratic functions. Our method can generate functions with higher algebraic
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degree if the PPN functions with high algebraic degree are used, as shown below
in Theorem 10.

Theorem 10: There is a PPN function f such that the function h defined by Eq.
(11) has algebraic degree m/2 · deg(g).

Proof: With the same notions as in Proposition 5, let

p0(xm/2+1, · · · , xm) = xm/2+1 · · ·xm, πi(xm/2+1, · · · , xm) = xm/2+i

for 1 ≤ i ≤ m/2. Thus, p(x1, · · · , xm) is perfect nonlinear. By Definition 4, for
any linear function L over GF (q)n, f(x, y) = p(x)+L(y) is a PPN function over
GF (q)m+n.

Let {α1, α2, · · · , αm+n} be a basis of GF (q)m+n over GF (q) and {β1, β2, · · ·,
βm+n} be its dual basis. Let z =

m∑
i=1

xiαi +
n∑

j=1

yiαm+i ∈ GF (q)m+n, xi, yj ∈

GF (q), then xi = tr
l(m+n)
l (βiz). Thus, the monomial p0(xm/2+1, · · · , xm) =

xm/2+1 · · ·xm has a polynomial representation as follows

xm/2+1 · · ·xm =
m/2∏
j=1

tr
l(m+n)
l (βj+m/2z) =

∑
(d1,···,dm/2)∈V

(m/2∏
j=1

βqdi

j+m/2

)
z

m/2∑
i=1

qdi

where V = {0, 1, · · · ,m+ n− 1}m/2. Let V = V1 ∪ V2, where

V1 = {d = (d1, · · · , dm/2) ∈ V | di 
= dj for 1 ≤ i 
= j ≤ m/2},

and V2 = V \ V1. Then, for any d ∈ V1,

m/2∑
i=0

qdi < qm+n and wq(
m/2∑
i=0

qdi) = w2(
m/2∑
i=0

qdi) = m/2.

Moreover, for different d ∈ V1, the exponents
m/2∑
i=0

qdi are different.

For d ∈ V2, let Φ(d) =
m/2∑
i=0

qdi mod (qm+n − 1) if
m/2∑
i=0

qdi ≥ qm+n and Φ(d) =

m/2∑
i=0

qdi otherwise. Then, one has wq(Φ(d)) ≤ wq(
m/2∑
i=0

qdi) ≤ m/2.

Thus, the polynomial representation of f(x, y) = p(x)+L(y) satisfies the condi-
tion in Eq. (22) in Appendix A, and by Proposition 17, deg(h) = m/2 · deg(g). ��

Some concrete examples for h obtained by choosing different f and g show that,
even if f does not satisfies the condition in Eq. (22), the constructed function
h can also achieve higher algebraic degree. However in this moment, we do not
know how to determine the exact value of deg(h) for this case.
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From the proof of Theorem 8, one can also easily determine the correlation
immunity and resiliency of h(x, y) as follows.

Proposition 11: Assume g is k-CI or k-resilient and L(y) = a1y1 + · · ·+ anyn. If
ai = 1 for some i ∈ {1, 2, · · · , n}, then h is k-CI or k-resilient, respectively.

The following theorem characterizes the propagation characteristics of h.

Theorem 12: Assume g is a nonzero function with linearity d. Then

(1) The linearity of h is (n− 1)l+ d; and
(2) Assume g is balanced and L(y) = a1y1 + · · ·+ anyn with binary coefficients

ai = 0 or 1. If g satisfies the propagation criterion of degree k, then so does h.

Proof: For α ∈ GF (q)m and β ∈ GF (q)n, one has

Δh(α, β) =
∑

x∈GF (q)m, y∈GF (q)n

(−1)h(x+α,y+β)+h(x,y)

=
∑

x∈GF (q)m, y∈GF (q)n

(−1)g(p(x+α)+L(y+β))+g(p(x)+L(y)).
(14)

Since p(x) is a perfect nonlinear function over GF (q)m, then for any 0 
= α ∈
GF (q)m, the function p(z + α) + p(z) is balanced over GF (q)m. Thus, there
is an even partition {U1, U2, · · · , Uq} of GF (q)m (i.e., |Ui| = qm−1) such that
p(x+ α) + p(x) = ci for any x ∈ Ui and {c1, c2, · · · , cq} = GF (q).

Therefore, for α 
= 0 and a nonzero L(y), Eq. (14) can be written as

Δh(α, β) =
q∑

i=1

∑
x∈Ui

∑
y∈GF (q)n

(−1)g[p(x)+L(y)+ci+L(β)]+g(p(x)+L(y))

=
q∑

i=1

qm−1qn−1Δg(ci + L(β))

= qm+n−2
∑

z∈GF (q)

Δg(z)

= qm+n−2
∑

z∈GF (q)

∑
c∈GF (q)

(−1)g(z+c)+g(c)

= qm+n−2
∑

c∈GF (q)

(−1)g(c)
∑

z∈GF (q)

(−1)g(z+c)

= qm+n−2I(g)2

(15)

where I(g) =
∑

c∈GF (q)

(−1)g(c).

When α = 0, since p(x) + L(y) is balanced, one has

Δh(α, β) =
∑

x∈GF (q)m, y∈GF (q)n

(−1)g(p(x)+L(y+β))+g(p(x)+L(y))

= qm+n−1
∑

z∈GF (q)

(−1)g[z+L(β)]+g(z)

= qm+n−1Δg[L(β)].

(16)

Thus, by Eq. (15) and Eq. (16), for a non-constant function g, (α, β) is a linear
structure of h if and only if α = 0 and L(β) is a linear structure of g(z). For
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each fixed L(β), there are 2(n−1)l elements y in GF (q)n such that L(y) = L(β).
Thus, the linearity of h is (n−1)l+d. If g is balanced, then I(g) = 0. Therefore,

Theorem 12 (2) holds since w2(L(β)) ≤
n∑

i=1

(w2(βi)) where β = (β1, β2, · · · , βn)

and w2(β) is the Hamming weight of β. ��

By Theorem 12 (1), h has no nonzero linear structure if d = 0 and n = 1.
Let n = 1 and L(x) = x, by choosing g with good trade-offs between nonlinear-

ity, resiliency, propagation characteristics, and linearity, h also has these desired
properties. Two concrete examples are constructed by the proposed method as
follows.

Example 13: The function

f(x1, x2, x3, x4, y1, y2, y3, y4, z1, z2, z3, z4)
= (x1y1 + x2y4 + x3y3 + x4y2 + z1, x1y2 + x2y1 + x2y4 + x3y3

+x4y2 + x4y3 + z2, x1y3 + x2y2 + x3y1 + x3y4 + x4y3 + x4y4

+z3, x1y4 + x2y3 + x3y2 + x4y1 + x4y4 + y1y2y3y4 + z4)

is a PPN function from GF (212) to GF (24). The quadratic Boolean function

g(z1, z2, z3, z4) = z1 + z2 + z3z4 + z2z3 + z1z4 + z1z2

is a (4, 2, 1, 1, 4, 2)-function, where (n, d, k, r,Ng, Lg) denotes an n-variable func-
tion with algebraic degree d, resiliency of order k, propagation criterion of degree
r, nonlinearity Ng and linearity Lg. Then, h = g ◦ f is a (12, 5, 1, 1, 1984, 2)-
Boolean function, whose algebraic expression is listed in Appendix B. For a
(4, 3, 0, 1, 4, 0)-Boolean function

g′(z1, z2, z3, z4) = z1z3 + z2z3 + z1z4 + z2z4 + z3z4 + z1z2z3,

the composition function h′ = g′ ◦ f is a (12, 6, 0, 1, 1984, 0)-Boolean function,
whose algebraic expression is too long and omitted here.

5 Conclusion

In this paper we introduced the concept of partially perfect nonlinear (PPN)
function to construct a new class of Boolean (in particular, plateaued) functions
with good cryptographic properties. The new functions are constructed by com-
posing a PPN function and a Boolean function. The nonlinearity, correlation
immunity, propagation criterion, and other cryptographic properties of the re-
sulting functions are good if suitable PPN functions and Boolean functions are
employed.

Acknowledgment. The authors thank anonymous reviewers for their useful
comments.
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Appendix A: Algebraic Degree of Composition Functions

In this appendix, the algebraic degree of composition functions over a finite field
is considered.

Let s be a nonnegative integer less than 2ml, and write it as

s =
ml−1∑
i=0

ai2i =
m−1∑
i=0

siq
i, (17)

where ai ∈ {0, 1} and si ∈ {0, 1, · · · , q−1}. Define w2(s) :=
ml−1∑
i=0

ai and wq(s) :=

m−1∑
i=0

si.

Lemma 14:
w2(s) ≤ wq(s). (18)

The equality holds if and only if

s =
m−1∑
i=0

siq
i, si ∈ {0, 1}. (19)

Proof: By Eq. (18), one has w2(s) =
m−1∑
i=0

w2(si). Since w2(si) ≤ si and that

w2(si) = si if and only if si = 0 or 1, it is clear that

w2(s) =
m−1∑
i=0

w2(si) ≤
m−1∑
i=0

si = wq(s). (20)

The equality in Eq. (21) holds if and only if si ∈ {0, 1} for all 0 ≤ i ≤ m−1. ��

Let f(x) be defined as in Eq. (1). Denote the set of all nonzero coefficients as by

C = {0 ≤ s ≤ qm − 1 | as 
= 0}. (21)

If there is an integer s′ ∈ C such that

deg(f) = wq(s′) = w2(s′), (22)

then by Lemma 14, one has s′ =
m−1∑
i=0

s′iq
i ∈ C where s′i ∈ {0, 1}. Furthermore,

for any s ∈ C, w2(s) ≤ w2(s′) ≤ m, and w2(s) = w2(s′) implies

w2(s) = wq(s) = wq(s′) = w2(s′),
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i.e., s =
m−1∑
i=0

siq
i with si ∈ {0, 1}.

Partition C into two subsets:

C1 = {s ∈ C |w2(s) = w2(s′)}, C2 = {s ∈ C |w2(s) < w2(s′)}. (23)

For any integer of the form r = 2r1 + · · · + 2rw2(r) ≤ q − 1, where 0 ≤ r1 <
· · · < rw2(r) < l, the expansion of (f(x))r can be written as

[f(x)]r =
w2(r)∏
j=1

(
qm−1∑
s=0

asx
s)2

rj =
w2(r)∏
j=1

(
qm−1∑
s=0

a2rj

s xs·2rj ) =
∑

e∈Cw2(r)

(
w2(r)∏
j=1

a2rj

ej
)xΦr,e

(24)

where e = (e1, e2, · · · , ew2(r)) and Φr,e =
w2(r)∑
j=1

2rjej.

The value and Hamming weight of the integer Φr,e are measured by the fol-
lowing two lemmas.

Lemma 15: Assume that f satisfies the condition in Eq. (22). Then for e ∈ Cw2(r)
1 ,

one has
Φr,e < qm, and w2(Φr,e) = w2(r) · w2(s′). (25)

If e′ ∈ Cw2(r)
1 and e′ 
= e, then Φr,e′ 
= Φr,e.

Proof: Since ej ≤ 1 + q + q2 + · · ·+ qm−1 = (qm − 1)/(q − 1), one has

Φr,e =
w2(r)∑
j=1

2rjej ≤
w2(r)∑
j=1

2rj (qm − 1)/(q − 1) ≤ qm − 1. (26)

For any 1 ≤ j ≤ w2(r), ej can be written as

ej = qj1 + qj2 + · · ·+ qjw2(s′) .

By the fact that 2iqu = 2i′qu′
holds for 0 ≤ i, i′ < l is equivalent to that i = i′

and u = u′, one has
w2(Φr,e) = w2(r) · w2(s′).

If e′ 
= e, it is easy to verify Φr,e′ 
= Φr,e. This finishes the proof. ��

Lemma 16: For e′ ∈ Cw2(r)\Cw2(r)
1 , set Φ′

r,e′ = Φr,e′ if Φr,e′ < qm and Φ′
r,e′ =

Φr,e′ mod (qm − 1) if Φr,e′ ≥ qm. Then

w2(Φ′
r,e′) < w2(r) · w2(s′). (27)

Proof: For e′ ∈ Cw2(r)\Cw2(r)
1 , one has

w2(Φr,e′) = w2(
w2(r)∑
j=1

2rje′j) ≤
w2(r)∑
j=1

w2(e′j) <
w2(r)∑
j=1

w2(s′) = w2(r) · w2(s′). (28)
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The proof follows the fact that w2(Φ′
r,e′) ≤ w2(Φr,e′). ��

Applying Lemmas 15 and 16, the algebraic degree of a composition function is
determined as follows.

Proposition 17: For functions f : GF (q)m → GF (q) and g(x) : GF (q)→ GF (2),
if f satisfies the condition in Eq. (22), then deg(g ◦ f) = deg(f) · deg(g).

Proof: Let f be expressed as Eq. (1) and g(x) =
q−1∑
r=0

brx
r. Then, by Eq. (25),

one has

g(f(x)) =
q−1∑
r=0

br[f(x)]r =
q−1∑
r=0

∑
e∈Cw2(r)

br(
w2(r)∏
j=1

a2rj

ej
)xΦr,e . (29)

By Lemmas 15 and 16, for any 1 ≤ r ≤ q − 1, one has

deg([f(x)]r) = w2(r) · w2(s′) ≤ deg(g) · deg(f),

where the equality holds if and only if w2(r) = deg(g).
For integers r1 and r2 with w2(r1) = w2(r2) = deg(g), and for e, e′ ∈ Cdeg(g)

1 ,
the equality Φr1,e = Φr2,e′ holds if and only if

r1 = r2 and e = e′.

This together with Lemmas 15 and 16 finish the proof of Proposition 17. ��

Appendix B: Algebraic Expression of a Composition
Function in Example 13

h(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12)
= x1x2x5x8 + x1x2x5 + x1x2x6 + x1x2x7x8 + x1x2x7 + x1x2x8

+x1x3x5x7 + x1x3x6x8 + x1x3x7 + x1x3x8 + x1x4x5x6 + x1x4x5x8

+x1x4x5 + x1x4x6 + x1x4x7 + x1x4x8 + x1x5x6 + x1x5x8 + x1x5x10

+x1x5x12 + x1x5 + x1x6x7 + x1x6x9 + x1x6x11 + x1x6 + x1x7x8

+x1x7x10 + x1x7x12 + x1x8x9 + x1x8x11 + x2x3x5 + x2x3x6x7 + x2x3x6

+x2x3x7x8 + x2x3x7 + x2x4x5x7 + x2x4x6x8 + x2x4x6 + x2x4x7x8

+x2x4x7 + x2x5x6 + x2x5x8 + x2x5x9 + x2x5x11 + x2x5 + x2x6x7

+x2x6x8 + x2x6x10 + x2x6x12 + x2x7x8 + x2x7x9 + x2x7x11 + x2x8x9

+x2x8x10 + x2x8x11 + x2x8x12 + x2x8 + x3x4x5x6 + x3x4x5 + x3x4x6x7

+x3x4x6x8 + x3x4x6 + x3x5x6x7x8 + x3x5x6 + x3x5x7 + x3x5x8

+x3x5x10 + x3x5x12 + x3x6x7 + x3x6x8 + x3x6x9 + x3x6x11 + x3x7x9

+x3x7x10 + x3x7x11 + x3x7x12 + x3x7 + x3x8x9 + x3x8x10 + x3x8x11

+x3x8x12 + x4x5x6x7x8 + x4x5x6 + x4x5x7 + x4x5x8 + x4x5x9

+x4x5x11 + x4x6x9 + x4x6x10 + x4x6x11 + x4x6x12 + x4x6 + x4x7x9

+x4x7x10 + x4x7x11 + x4x7x12 + x4x8x9 + x4x8x10 + x4x8x11 + x4x8x12

+x4x8 + x5x6x7x8x9 + x5x6x7x8x11 + x9x10 + x9x12 + x9 + x10x11

+x10 + x11x12.
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Abstract. In this paper we present a strategy to construct 1-resilient
Boolean functions with very good nonlinearity and autocorrelation. Our
strategy to construct a 1-resilient function is based on modifying a bent
function, by toggling some of its output bits. Two natural questions that
arise in this context are “at least how many bits and which bits in the
output of a bent function need to be changed to construct a 1-resilient
Boolean function”. We present an algorithm which determines a minimum
number of bits of a bent function that need to be changed to construct a 1-
resilient Boolean function. We also present a technique to compute points
whose output in the bent function need to be modified to get a 1-resilient
function. In particular, the technique is applied upto 14-variable functions
and we show that the construction provides 1-resilient functions reaching
currently best known nonlinearity and achieving very low autocorrelation
absolute indicator values which were not known earlier.

Keywords: Autocorrelation, Bent Function, Boolean Function, Nonlin-
earity, Resiliency.

1 Introduction

Boolean functions are extensively used in stream cipher systems. Important nec-
essary properties of Boolean functions used in these systems are balancedness,
high order resiliency, high algebraic degree, and high nonlinearity. Construc-
tions of Boolean functions possessing a good combination of these properties
have been proposed in [8,10]. In [9,3], it had been shown how bent functions
can be modified to construct highly nonlinear balanced Boolean functions. A
recent construction method [5,6] presents modification of some output points of
a bent function to construct highly nonlinear 1-resilient functions. In [6], a lower
bound on the minimum number of bits of a bent function that need to be mod-
ified is given. However the bound is not tight for functions with more than 10
variables. In this paper, we give a better lower bound on the minimum number
of bits of a bent function that need to be changed. The bound is proved to be
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tight for functions up to 14 variables. Further [6] does not provide any technique
to select the points whose output in the bent function need to be modified and
the points are selected by computer simulation. Our main contribution here is
a construction to select those points whose output in the bent function need to
be modified to get a 1-resilient function. For the first time, we give a combi-
natorial construction which can be used to obtain a 1-resilient function for any
n. In particular, we concentrate on construction of 1-resilient Boolean functions
up to 14 variables with best known nonlinearity and autocorrelation. Through-
out the paper we consider the number of input variables (n) is even. Here, we
identify Maiorana-McFarland type bent functions which can be modified to get
1-resilient functions with currently best known parameters. We get 1-resilient
functions with better nonlinearity and autocorrelation absolute indicator values
that were not known earlier for n = 12, 14 variables.

1.1 Preliminaries

A Boolean function on n variables may be viewed as a mapping from {0, 1}n
into {0, 1}. The Hamming distance between two binary strings S1, S2 is denoted
by d(S1, S2), i.e., d(S1, S2) = #(S1 
= S2). Also the Hamming weight or simply
the weight of a binary string S is the number of ones in S. This is denoted by
wt(S). An n-variable function f is said to be balanced if its output column in
the truth table contains equal number of 0s and 1s (i.e., wt(f) = 2n−1).

Denote addition operator over GF (2) by ⊕. An n-variable Boolean function
f(x1, . . . , xn) can be considered to be a multivariate polynomial overGF (2). This
polynomial can be expressed as a sum of product representation of all distinct k-
th order products (0 ≤ k ≤ n) of the variables. More precisely, f(x1, . . . , xn) can
be written as a0 ⊕

⊕
1≤i≤n aixi ⊕

⊕
1≤i<j≤n aijxixj ⊕ . . . ⊕ a12...nx1x2 . . . xn,

where the coefficients a0, aij , . . . , a12...n ∈ {0, 1}. This representation of f is
called the algebraic normal form (ANF) of f . The number of variables in the
highest order product term with nonzero coefficient is called the algebraic degree,
or simply the degree of f and denoted by deg(f).

Functions of degree at most one are called affine functions. An affine function
with constant term equal to zero is called a linear function. The set of all n-
variable affine functions is denoted by A(n). The nonlinearity of an n-variable
function f is nl(f) = ming∈A(n) d(f, g), i.e., the distance from the set of all
n-variable affine functions.

Let x = (x1, . . . , xn) and ω = (ω1, . . . , ωn) both belong to {0, 1}n and x ·
ω = x1ω1 ⊕ . . . ⊕ xnωn. Let f(x) be a Boolean function on n variables. Then
the Walsh transform of f(x) is a real valued function over {0, 1}n which is
defined as Wf (ω) =

∑
x∈{0,1}n(−1)f(x)⊕x·ω. In terms of Walsh spectrum, the

nonlinearity of f is given by nl(f) = 2n−1 − 1
2 maxω∈{0,1}n |Wf (ω)|. For n even,

the maximum nonlinearity of a Boolean function can be 2n−1 − 2
n
2 −1 and the

functions possessing this nonlinearity are called bent functions [7]. Further, for
a bent function f on n variables, Wf (ω) = ±2

n
2 for all ω.

In [4], an important characterization of correlation immune and resilient func-
tions has been presented, which we use as the definition here. An n-variable
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function f is m-resilient (respectively m-th order correlation immune) iff its
Walsh transform satisfies Wf (ω) = 0, for 0 ≤ wt(ω) ≤ m (respectively Wf (ω) =
0, for 1 ≤ wt(ω) ≤ m).

We will now define restricted Walsh transform which will be frequently used in
this text. The restricted Walsh transform of f(x) on a subset S of {0, 1}n is a real
valued function over {0, 1}n which is defined as Wf (ω)|S =

∑
x∈S(−1)f(x)⊕x·ω.

Now we present the following technical result.

Proposition 1. [6] Let S ⊂ {0, 1}n and b(x), f(x) be two n-variable Boolean
functions such that f(x) = 1 ⊕ b(x) when x ∈ S and f(x) = b(x) otherwise.
Then Wf (ω) = Wb(ω)− 2Wb(ω)|S .

Let α ∈ {0, 1}n and f be an n-variable Boolean function. Define the autocorrela-
tion value of f with respect to the vector α asΔf (α) =

∑
x∈{0,1}n(−1)f(x)⊕f(x⊕α)

and the absolute indicator Δf = maxα∈{0,1}n,α�=0 |Δf (α)|. Note that, for a bent
function f on n variables, Δf (α) = 0 for all nonzero α, i.e., Δf = 0.

Analysis of autocorrelation properties of correlation immune and resilient
Boolean functions has gained substantial interest recently. In [1], it has been identi-
fied that some well known constructions of resilientBoolean functions are not good
in terms of autocorrelation properties. Since the present construction is modifica-
tion of bent functions which possess the best possible autocorrelation properties,
we get very good autocorrelation properties of the 1-resilient functions.

2 Main Results

In this section, we present an algorithm which determines a minimum number of
bits of a bent function that need to be changed to construct a 1-resilient Boolean
function. We also provide a construction that computes the points whose output
in the bent function need to be modified to get a 1-resilient function.

Let �(n) be the minimum distance between n-variable bent and 1-resilient
functions, i.e., �(n) = min {d(b, f) : b is a bent function, f is a 1-resilient
function}. Then it is easy to note that �(n) ≥ 2

n
2 −1. For a bent function b on n

variables the Walsh spectrum values are +2
n
2 or −2

n
2 . In this paper, we consider

the bent functions b with Wb(ω) = +2
n
2 for 0 ≤ wt(ω) ≤ 1. Let S be a subset of

{0, 1}n and f(x) be an n-variable Boolean function obtained by modifying the
b(x) values for x ∈ S and keeping the other bits unchanged. That is,

f(x) = 1⊕ b(x), if x ∈ S
= b(x), otherwise.

Then from Proposition 1, Wf (ω) = Wb(ω) − 2Wb(ω)|S ∀ ω, and in particular,
Wf (ω) = 2

n
2 − 2Wb(ω)|S for 0 ≤ wt(ω) ≤ 1. It is known that f is 1-resilient

iff Wf (ω) = 0 for 0 ≤ wt(ω) ≤ 1, i.e., iff Wb(ω)|S = 2
n
2 −1 for 0 ≤ wt(ω) ≤ 1.

Thus the problem is to find a subset S of {0, 1}n of minimum cardinality and a
suitable bent function b(x) that satisfy the following conditions:

Wb(ω)|S = 2
n
2 −1 for 0 ≤ wt(ω) ≤ 1 (1)

Wb(ω) = +2
n
2 for 0 ≤ wt(ω) ≤ 1 (2)
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2.1 Determining Minimum Number of Bits of an n-Variable Bent
Function That Need to Be Modified to Construct a 1-Resilient
Function

For the convenience of the reader, we would like to write subset S as matrix
S whose rows are the elements of S. Formally, given S = {xi1 , xi2 , . . . , xik} ⊆
{0, 1}n, consider the matrices

Sk×n = (xi1 , xi2 , . . . , xik)T , b(S)k×1 = (b(xi1 ), b(xi2 ), . . . , b(xik ))T , and

(S⊕ b(S))k×n = (xi1 ⊕ b(xi1 ), xi2 ⊕ b(xi2), . . . , xik ⊕ b(xik))T .

By AT we mean transpose of a matrix A. Also by abuse of notation, xij ⊕ b(xij )
means the GF(2) addition (XOR) of the bit b(xij ) with each of the bits of xij .

Consider Condition 1 with wt(ω) = 0. If k0 is the number of 0s in b(S) and k1 is
the number of 1s in b(S), then we have that, k0− k1 = 2

n
2 −1. Also, k0 + k1 = k.

Solving these two equations, k0 = k
2 + 2

n
2 −2 and k1 = k

2 − 2
n
2 −2. Now consider

Condition 1 with wt(ω) = 1. Let ω be the unit vector having a 1 in position j

and 0 in all other places. Then the jth column
(
xi1

j ⊕b(xi1), xi2
j ⊕b(xi2), . . . xik

j ⊕

b(xik)
)T

of S⊕ b(S) has k
2 +2

n
2 −2 0s and k

2 − 2
n
2 −2 1s. Thus by Condition 1, we

have that there are exactly k
2 + 2

n
2 −2 many 0’s and k

2 − 2
n
2 −2 many 1’s in b(S)

and in each column of S⊕ b(S).

Without loss of generality we assume that the first k
2 + 2

n
2 −2 entries of b(S) are

0s and the last k
2 − 2

n
2 −2 entries are 1s. Denote the sub-matrix consisting of

the first k
2 + 2

n
2 −2 rows of S as block S0 (the corresponding elements are in S0)

and the sub-matrix consisting of the last k
2 − 2

n
2 −2 rows of S as block S1 (the

corresponding elements are in S1). Thus S = S0 ∪ S1 and S = (S0,S1)T . Since
S is a set, all the rows of S are distinct and furthermore, as the first k

2 + 2
n
2 −2

entries of b(S) are 0s and the last k
2 −2

n
2 −2 entries are 1s, the rows of S0⊕ b(S0)

are distinct among themselves as are the rows of S1⊕b(S1). Further, the Boolean
complement of any row of S0 ⊕ b(S0) is not a row in S1 ⊕ b(S1).

Our problem is now to construct a matrix S⊕b(S) = (S0⊕b(S0),S1⊕b(S1))T

satisfying the conditions (Condition 1 in matrix notation):

(a) The number of rows in S0 ⊕ b(S0) is k
2 + 2

n
2 −2, and the number of rows in

S1 ⊕ b(S1) is k
2 − 2

n
2 −2.

(b) Weight of each column of S⊕ b(S) is k
2 − 2

n
2 −2.

(c) Rows of S0 ⊕ b(S0) are distinct among themselves and so are the rows of
S1⊕ b(S1). Further, the Boolean complement of any row of S0⊕ b(S0) is not
in S1 ⊕ b(S1).

Note that, for the above condition to be satisfied, weight of each column of
S ⊕ b(S) must be at least one for, if it is zero all rows of S ⊕ b(S) will be zero
row vectors and hence identical. So, k

2 − 2
n
2 −2 ≥ 1 which gives k ≥ 2

n
2 −1 + 2.
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Suppose that one such matrix S⊕b(S) is constructed. Note that the minimum
number of 1s required for the distinct rows of S0⊕ b(S0) is at least

∑r0
i=1 i
(
n
i

)
+

(r0 + 1)
(

k
2 + 2

n
2 −2 −

∑r0
i=0

(
n
i

))
, where r0 is such that

r0∑
i=0

(
n
i

)
≤ k

2
+ 2

n
2 −2 <

r0+1∑
i=0

(
n
i

)
is satisfied (using all the rows upto weight r0 and some of the rows with weight
r0 + 1). Similarly the minimum number of 1s required for the distinct rows of
S1 ⊕ b(S1) is at least

∑r1
i=1 i
(
n
i

)
+ (r1 + 1)

(
k
2 − 2

n
2 −2 −

∑r1
i=0

(
n
i

))
, where r1 is

such that
r1∑

i=0

(
n

i

)
≤ k

2
− 2

n
2 −2 <

r1+1∑
i=0

(
n

i

)
is satisfied. So the minimum number of 1s required to form S⊕ b(S) is at least

r0∑
i=1

i

(
n

i

)
+ (r0 + 1)

(
k

2
+ 2

n
2 −2 −

r0∑
i=0

(
n

i

))

+
r1∑

i=1

i

(
n

i

)
+ (r1 + 1)

(
k

2
− 2

n
2 −2 −

r1∑
i=0

(
n

i

))
,

where r0 and r1 are as above.
On the other hand, Condition 1b says there would be exactly n× (k

2 − 2
n
2 −2)

many 1s in S ⊕ b(S) as each column contains exactly k
2 − 2

n
2 −2 many 1s and

there are n columns. If using rows of lower weight we obtain columns of weight
less than k

2 −2
n
2 −2 then we may increase the weight of our rows. However, if the

weight of some column is greater than k
2 − 2

n
2 −2 then we cannot do with k rows

and must increase k. This is the basis of the next algorithm which computes
a lower bound on �(n). The above arguments tell us that k must satisfy the
following condition:

r0∑
i=1

i

(
n

i

)
+ (r0 + 1)

(
k

2
+ 2

n
2 −2 −

r0∑
i=0

(
n

i

))
+

r1∑
i=1

i

(
n

i

)
+(r1 + 1)

(
k

2
− 2

n
2 −2 −

r1∑
i=0

(
n

i

))
≤ n×

(
k

2
− 2

n
2 −2

)
.

Here is an algorithm to compute the minimum k satisfying this condition.

Algorithm 1
Input: number of variables n.
Output: number of points required k, r0 and r1.

1. Set k = 2
n
2 −1 + 2 and w = 1 where w is the weight of columns of S ⊕ b(S).

(w = k
2
− 2

n
2 −2)
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2. Compute r0 and r1 such that

r0∑
i=0

(
n
i

)
≤ k

2
+ 2

n
2 −2 <

r0+1∑
i=0

(
n
i

)
and

r1∑
i=0

(
n
i

)
≤ k

2
− 2

n
2 −2 <

r1+1∑
i=0

(
n
i

)
are satisfied.

3. Set minimum number of 1s in S ⊕ b(S),

z =

r0∑
i=0

i

(
n
i

)
+ (r0 + 1)

(
k

2
+ 2

n
2 −2 −

r0∑
i=0

(
n
i

))

+

r1∑
i=0

i

(
n
i

)
+ (r1 + 1)

(
k

2
− 2

n
2 −2 −

r1∑
i=0

(
n
i

))
.

4. If z ≤ n · w, stop. k is the required number of points.
5. k = k + 2, w = w + 1. (w = k

2
− 2

n
2 −2, so that when k increases by 2, w increases

by 1.)
6. Go to step 2.

The following table illustrates the number of points k, as computed by the
above algorithm for different values of n.

n 8 10 12 14 16 18 20 22 24 26
k 10 22 44 86 168 342 684 1350 2662 5430

Theorem 1. The above algorithm gives a lower bound on the number of bits
of an n-variable bent function that need to be modified to construct a 1-resilient
function, that is k ≤ �(n).

Proof. Let b be a bent function and f a 1-resilient function such the distance
between b and f is �(n), that is the number of points where b and f give different
values is �(n). Let S be the set of points where b and f give different values
(|S| = �(n)). That is, S = {x ∈ {0, 1}n : b(x) 
= f(x)}. Then by modifying the
bits of b corresponding to elements of S we obtain f . Hence �(n) must satisfy
the necessary Conditions 1a, 1b & 1c for k. The above algorithm computes the
minimum k that satisfies Conditions 1a, 1b & 1c, and hence k ≤ �(n). ��

The algorithm in the next section computes k points satisfying Conditions 1a,
1b & 1c. Then, to get a 1-resilient function, we will need a bent function b
which has the desired output values at the points given by the next algorithm,
namely, b must be such that

b(x) =
{

0, for x ∈ S0

1, for x ∈ S1

Since the class of bent functions is very large, it may be conjectured that
we can find a bent function satisfying the above condition. Then, the above
algorithm gives us the minimum distance since it is already a lower bound.
For n = 10, 12, 14 we identify Maiorana-McFarland type bent functions which
can be modified to get 1-resilient functions, using the points given by the next
algorithm. This shows that the bound given by the above algorithm is tight and
is the minimum distance for these values of n.
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2.2 Finding Points Whose Output Bits in the Bent Function Need
to Be Modified to Get 1-Resilient Function

Basic Idea and Approach
To find an n variable 1-resilient function from a bent function, we modify output
for certain points of the bent function. Essentially, we look only at the S⊕ b(S)
matrix where S is the set of points to be modified and b is the bent function.
Our aim is to find a set of points S satisfying Condition 1. Here we give a
construction of S with the number of rows k given by Algorithm 1, k

2 + 2
n
2 −2

rows in S0 ⊕ b(S0) and k
2 − 2

n
2 −2 in S1 ⊕ b(S1). Our technique is as suggested

by Algorithm 1.
Since we want S satisfying Conditions 1a, 1b & 1c with minimum number of

rows, we use rows of minimum weight. If we use rows of higher weight, column
weight k

2 − 2
n
2 −2 also increases so that we need more number of points k. First

we construct the matrix S0 ⊕ b(S0). Matrix S1 ⊕ b(S1) is also constructed in a
similar manner. As in Algorithm 1, to construct S0 ⊕ b(S0) we use all points of

weight ≤ r0. These rows will have a uniform column weight
∑ r0

i=0 i(n
i)

n . Further
we need m0 = k

2 + 2
n
2 −2 −

∑r0
i=0

(
n
i

)
rows of weight r0 + 1.

We want to select the remaining rows of weight r0 + 1 such that the weight
of all n columns is more or less uniform to keep the total weight of each column
in S⊕ b(S) as k

2 − 2
n
2 −2. Let w0 =

⌊
m0×(r0+1)

n

⌋
and t0 be the remainder so that

m0 × (r0 + 1) = n×w0 + t0. By a careful selection of m0 rows of weight r0 + 1,
we can get t0 columns of weight w0 + 1 and n− t0 columns of weight w0, that
is the column weights do not differ by more than 1. We now need a few definitions.

The circular shift operator ROT rotates the Boolean vector x by d positions.
That is, if y = ROT(x, d) then y is the vector obtained by a circular shift of the
bits in x by d positions. For example, ROT(x, 2) = (0, 0, 0, 1, 0, 1, 0, 0), where
x = (0, 0, 0, 0, 0, 1, 0, 1).

A set C of Boolean row vectors is called a circular block if for any x ∈ C,
C = { ROT(x, d) : d is an integer}. That is, the vectors in C are identical up to
circular shifting and C is closed under circular shifting.

Example 1. When x = (0, 0, 0, 0, 0, 0, 1, 1) in the above definition, we get the
circular block

C = {(0, 0, 0, 0, 0, 0, 1, 1), (0, 0, 0, 0, 0, 1, 1, 0), (0, 0, 0, 0, 1, 1, 0, 0),
(0, 0, 0, 1, 1, 0, 0, 0), (0, 0, 1, 1, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0, 0, 0),
(1, 1, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0, 1)}.

An important characteristic of circular blocks is that all columns are of equal
weight. Note that |C| ≤ n. Also, a circular block may not have n vectors.

Example 2. When x = (0, 0, 0, 1, 0, 0, 0, 1), we get the circular block C = {(0, 0, 0,
1, 0, 0, 0, 1), (0, 0, 1, 0, 0, 0, 1, 0), (0, 1, 0, 0, 0, 1, 0, 0), (1, 0, 0, 0, 1, 0, 0, 0)} with
|C| = 4.
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A generator of a circular block C is the vector g ∈ C which appears first in
lexicographic order. In other words, it is the smallest number when the vectors
in C are interpreted as binary numbers. For the circular block in Example 1
the generator is (0, 0, 0, 0, 0, 0, 1, 1) while for that in Example 2 the generator is
(0, 0, 0, 1, 0, 0, 0, 1). Note that the Least Significant Bit (LSB) of a generator is
always 1. We will obtain circular block C by ≤ n circular shifts of it’s generator
g. That is C = { ROT(g, d) : d ≤ n}

The next algorithm constructs a matrix T with m rows of weight r.
We can represent a point x by a set containing, the positions of the r 1s in

the point. For example, x = (0, 0, 1, 0, 0, 0, 1, 0) is represented by the set {2, 6},
which we denote by the ordered list x̂ = [2, 6].

Since the LSB of a generator is always 1, the number of generators is ≤
(
n−1
r−1

)
and their ordered list representations will be a selection of r − 1 positions from
the set {2, 3, . . . , n} in addition to the LSB. However, all such selections will not
give a generator. Still, we can easily check if such a selection gives a generator
or not.

First, note that the ROT operation for the ordered list representation is just
addition modulo n to each of the list elements.

To check if a selection [p1, p2, . . . , pr−1] gives a generator, note that the cor-
responding vector with the LSB is x̂ = [1, p1, p2, . . . , pr−1]. Now, if this vector
is not a generator then it must have a generator g in it’s circular block. Then
g < x in the lexicographic ordering. Also, g can be obtained from x by circular
shift. Since LSB in g is 1, when rotating x to get g, a 1 in x initially at position
pi, 1 ≤ i ≤ (r − 1) will come at the LSB. This corresponds to a rotation by
n− pi + 1 bit shifts.

So to check if a vector x given by the selection is a generator or not we just
have to rotate each of the (r− 1) 1s at positions pi, 1 ≤ i ≤ (r− 1) by n− pi + 1
and check if the resulting vector yi < x in lexicographic ordering. If no yi < x
then x is a generator. Thus checking if x is a generator requires O(r) operations.

Now to get a circular block, we get a selection [p1, p2, . . . , pr−1] from {2, 3, . . . ,
n} and check if the vector x corresponding to x̂ = [1, p1, p2, . . . , pr−1] is a gen-
erator. Then we construct a circular block using the generator.

The issue is, when constructing m rows of weight r, after using some number
of circular blocks, we may find that the number of rows required is less than the
number of rows in the next circular block. If we use only some rows of the next
circular block to complete m rows we may find that the column weights differ
by more than 1. To overcome this, we reserve a generator gr and do not use it at
first. Only when we find that the remaining number of rows to be constructed
is ≤ n we use gr. gr is chosen as follows:

1. If r divides n: ĝr = [1, 2, . . . , r]. We generate points from this generator as
shown in the next example:

Example 3. For n = 8 with r = 2, ĝr = [1, 2] = (0, 0, 0, 0, 0, 0, 1, 1) and the
points are generated in the following sequence:
(0, 0, 0, 0, 0, 0, 1, 1), (0, 0, 0, 0, 1, 1, 0, 0), (0, 0, 1, 1, 0, 0, 0, 0), (1, 1, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 1, 1, 0), (0, 0, 0, 1, 1, 0, 0, 0), (0, 1, 1, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0, 1).
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The following pseudocode generates these n rows, {x[1], x[2], . . . , x[n]}

for i in {0,1, ..., r-1}:
for j in {0, 1, ..., n/r-1}:

x[i+j] = ROT(g, j*r + i)

2. If r does not divide n: gr is chosen by distributing the n − r 0s equally
among the 1s. Points are generated by successive circular shifts as shown
below:

Example 4. For n = 8 with r = 3, ĝr = [1, 3, 6] and the points are generated
in the following sequence:
(0, 0, 1, 0, 0, 1, 0, 1), (0, 1, 0, 0, 1, 0, 1, 0), (1, 0, 0, 1, 0, 1, 0, 0), (0, 0, 1, 0, 1, 0, 0, 1),

(0, 1, 0, 1, 0, 0, 1, 0), (1, 0, 1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0, 0, 1), (1, 0, 0, 1, 0, 0, 1, 0).

Note that in each case, after every row, column weights do not differ by more
than 1.

Algorithm 2
Input: number of variables n, number of rows m, row weight r.
Output: m×n matrix T having t columns of weight w+1 and n− t columns of weight
w, with w = �m×r

n
� and t the remainder so that m × r = n × w + t.

1. Initialize T as the empty matrix. T = ().
2. Compute the reserved generator gr accordingly as r divides n or not.
3. Initialize m′ = 0, the number of rows of T constructed so far.
4. If m − m′ ≤ n, go to Step (8).
5. Compute a new generator g, g �= gr.
6. Construct the circular block C by repeatedly circular shifting g (Let the number

of vectors in C be d).
7. T = (T, C)T , m′ = m′ + d and go to Step (4).
8. Use the reserved generator gr to construct the partial block D with m− m′ rows.
9. T = (T, D)T .

Theorem 2. Algorithm 2 runs correctly in O(r ·
(
n−1
r−1

)
) time.

Proof. Since we ensure that at the end of the algorithm, column weights do not
differ by more than 1, and we use rows of minimum possible weights, we get the
column weights as desired and the algorithm runs correctly. Further, the number
of generators is ≤

(
n−1
r−1

)
, obtained by a selection of r − 1 positions from the set

{2, 3, . . . , n} in addition to the LSB. Checking if a selection gives a generator or
not requiresO(r) operations. So Algorithm 2 requiresO(r ·

(
n−1
r−1

)
) operations. ��

Now, we construct S0⊕ b(S0) by first including all points of weight upto r0 and
then using Algorithm 2 to find the remaining m0 = k

2 + 2
n
2 −2−

∑r0
i=0

(
n
i

)
points

of weight r0 +1. Similarly for S1⊕b(S1), include all points of weight upto r1 and
then use Algorithm 2 to find the remaining m1 = k

2 − 2
n
2 −2 −

∑r1
i=0

(
n
i

)
points

of weight r1 + 1.
After constructing S0⊕ b(S0) and S1⊕ b(S1) in this manner, column weights

in the two matrices do not differ by more than 1. But the S⊕ b(S) matrix thus



426 S. Maity, C. Arackaparambil, and K. Meyase

obtained may have column weights differing by more than 1. To avoid this we
permute the columns of S1 ⊕ b(S1) so that the columns of higher weight are
identified with the columns of lower weight of S0 ⊕ b(S0). Then in the resulting
S⊕ b(S) matrix, column weights do not differ by more than 1.

Now to satisfy Conditions 1a, 1b & 1c we need only that the columns weights
are equal. To do this we need to add exactly one 1 in certain columns, z′ in
number (note that z′ < n). This is not too difficult since we have a large number
of rows (> 2

n
2 −1).

Construction 1
Input: number of variables n, number of points k, r0 and r1 from Algorithm 1.
Output: k × n matrix S satisfying Conditions 1a, 1b & 1c.

1. Add all rows of weight r0 and r1 to the matrices S0 ⊕ b(S0) and S1 ⊕ b(S1)
respectively.

2. Compute m0 = k
2 + 2

n
2 −2 −

∑r0
i=0

(
n
i

)
and m1 = k

2 − 2
n
2 −2 −

∑r1
i=0

(
n
i

)
.

3. Use Algorithm 2 with inputs n, m0, r0 + 1 to get matrix T0.
S0 ⊕ b(S0) = (S0 ⊕ b(S0), T0)T .

4. Use Algorithm 2 with inputs n, m1, r1 + 1 to get matrix T1.
S1 ⊕ b(S1) = (S1 ⊕ b(S1), T1)T .

5. Permute columns of S1 ⊕ b(S1) suitably so that columns of higher weight
of the S1 ⊕ b(S1) matrix are identified with that of lower weight columns of
S0 ⊕ b(S0).

6. Accommodate the remaining z′ ones in the two matrices in a suitable man-
ner.

7. S0 = S0 ⊕ b(S0) and S1 = 1⊕ (S1 ⊕ b(S1)).
8. S = (S0,S1)T .

Theorem 3. Construction 1 finds inputs whose output in the bent function need
to be modified to get 1-resilient function.

Proof. To show that Conditions 1a, 1b & 1c hold for the matrix S constructed
as above, note that k is obtained from Algorithm 1, at the end of which z ≤ w ·n.
Algorithm 2 ensures that column weights of S⊕ b(S) do not differ by more than
1, using rows of minimum possible weights. So in Construction 1 after adding
the remaining z′ ones, each column has weight exactly k

2 − 2
n
2 −2.

Algorithm 2 constructs the matrices using distinct rows. We now only need to
show that the Boolean complement of any row of S0 ⊕ b(S0) is not in S1 ⊕ b(S1).
Weight of any row in S0 ⊕ b(S0) is ≤ r0 + 1 so it’s complement must have weight
≥ n− r0 − 1. So if the rows in S1 ⊕ b(S1) are of weight < n− r0 − 1 then we are
through. Here we assume that r1 < n−r0 or equivalently r0 +r1 < n. That this is
a reasonable assumption can be observed from the table giving values for r0 and
r1 up to n = 26. We can see that r0 and r1 grow very slowly as compared to n. ��

Since r1 ≤ r0, the next theorem holds.

Theorem 4. Construction 1 requires O(r0 ·
(

n−1
r0−1

)
) time.
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3 Construction of the 1-Resilient Function

Now that we have the set S we need to construct the bent function b satisfying
Conditions 1 & 2.

The original Maiorana-McFarland class of bent function is as follows [2]. Con-
sider n-variable Boolean functions on (X,Y ), where X,Y ∈ {0, 1}n

2 of the form
b(X,Y ) = X · π(Y ) + g(Y ) where π is a permutation on {0, 1}n

2 and g is any
Boolean function on n

2 variables. Then b is a bent function. For a fixed value of
Y , X · π(Y ) can be seen as a linear function on X and g(Y ) is constant either
0 or 1 over all X . So that the function b can be seen as a concatenation of 2

n
2

distinct (upto complementation) affine function on n
2 variables.

We require a bent function b(x) on n variables satisfying the condition that
b(x) = 0 for x ∈ S0 and b(x) = 1 for x ∈ S1. We have to decide what permuta-
tions π on {0, 1}n

2 and what kind of functions g on {0, 1}n
2 we can take such that

the conditions on b are satisfied. Let us fix the notation and ordering of input
variables as x = (x1, x2, . . . , xn), X = (X1, X2, . . . , Xn

2
) = (x1, x2, . . . , xn

2
), and

Y = (Y1, Y2, . . . , Yn
2
) = (xn

2 +1, xn
2 +2, . . . , xn).

Now, we look at Condition 2. It is easy to see that for 0 ≤ wt(ω) ≤ 1 a bent
function will have the restricted Walsh spectrum valueWb(ω)|

(X,Y ),X∈{0,1}n
2

= 0

for all values of Y except for one Y where it is ±2
n
2 . We want Wb(ω) = +2

n
2 at

that Y . This will happen only whenX ·π(Y )⊕g(Y )⊕x·ω = 0 orX ·π(Y )⊕g(Y ) =
x · ω at that Y . We ensure this by conditions as below:

1. For wt(ω) = 0 we want for one Y , X · π(Y ) ⊕ g(Y ) = x · ω. That is X ·
π(Y )⊕ g(Y ) = 0. Not that here, X is variable and takes all possible values.
Equating the constant parts, we get g(Y ) = 0. Equating the variable parts,
we get X · π(Y ) = 0 so that π(Y ) = (0, 0, . . . , 0).
So we require for a particular Y , π(Y ) = (0, 0, . . . , 0) and g(Y ) = 0.

2. For ω having a 1 in the latter half, we want for one Y , X ·π(Y )⊕g(Y ) = x·ω.
But x · ω = xi, with n

2 < i ≤ n, which is constant. So X · π(Y ) must be
constant giving π(Y ) = (0, 0, . . . , 0). This must hold for each such value of
ω so that g(Y ) = xn

2 +1 = xn
2 +2 = . . . = xn

So we require either Y = (0, 0, . . . 0) with π(Y ) = (0, 0, . . . , 0) and g(Y ) = 0
OR Y = (1, 1, . . . 1) with π(Y ) = (0, 0, . . . , 0) and g(Y ) = 1.

3. The last case is for ω having a 1 in the former half, we want for one Y ,
X · π(Y )⊕ g(Y ) = x · ω. But x · ω = xi, with 1 ≤ i ≤ n

2 . Equating constant
parts, g(Y ) = 0, so that X · π(Y ) = xi. We get wt(π(Y )) = 1 with the 1 in
the i’th position.
So our condition is: for π(Y ) ∈ {(1, 0, . . . , 0), (0, 1, . . . , 0), (0, 0, . . . , 1))},
g(Y ) = 0.

We can combine the first two parts above to give the following two conditions:

π(0, 0, . . . , 0) = (0, 0, . . . , 0) and g(0, 0, . . . , 0) = 0 . (3)
For π(Y ) ∈ {(1, 0, . . . , 0), (0, 1, . . . , 0), (0, 0, . . . , 1))}, g(Y ) = 0 . (4)
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Construction of 1-resilient functions for n = 10, 12, 14 are placed in the
Appendices.

4 Conclusions

In this paper we present a strategy to construct highly nonlinear 1-resilient
functions by modifying some output bits of a bent function. We present a good
lower bound on the minimum number of bits of a bent function needed to be
modified. We have shown that the bound is tight for functions upto 14-input
variables. One interesting problem is to study whether Algorithm 1 provides
the minimum distance between n-variable bent and 1-resilient functions for all
even n. We present an algorithm to generate the points whose output in the
bent function require to be modified. For n = 10, 12, 14 we identify Maiorana-
McFarland type bent functions which can be modified to get 1-resilient functions,
using the points given by Construction 1. This shows that the bound given by
Algorithm 1 is tight and is the minimum distance for these values of n. Further
our construction is superior to [6] in terms of the nonlinearity (we get better
nonlinearity for 14 variables) and autocorrelation absolute indicator (we get 1-
resilient functions with absolute indicator value that was not known earlier for
12 variable). Since the class of bent functions is very large, it may be conjectured
that it is always possible to identify bent functions which can be modified to get
1-resilient functions, using the points given by Construction 1.
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Appendices

A The 10-Variable 1-Resilient Functions

Algorithm 1 gives us k = 22. We compute r0 = 1 and r1 = 0 so that m0 = 8 and
m1 = 2. Using all points of weight ≤ 1 (as r0 = 1) and the reserved generator
[12] = (0000000011) (as m0−m′ = 8 < 10 and 2 divides n in Algorithm 2) we get

S0 = S0 ⊕ b(S0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Using the point of weight zero and the reserved generator [1] = (0000000001)
(as m1 −m′ = 2 < 10 = n and 1 divides n) we get

S1 ⊕ b(S1) =

⎛⎝ 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0

⎞⎠ .

We find that z′ = 2. We add these in the rows of S1 ⊕ b(S1) to get

S1 ⊕ b(S1) =

⎛⎝ 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 0 0 0

⎞⎠
and

S1 = 1 ⊕ S1 ⊕ b(S1) =

⎛⎝ 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 0
1 0 0 1 1 1 1 1 1 1

⎞⎠ .

Taking g(Y ) = 0 and π(Y ) = Y. we get the value of b(x) = b(X,Y ) = X ·
π(Y ) + g(Y ) to be zero when x ∈ S0 and one when x ∈ S1. Also π and g
satisfy Conditions 3 & 4. A 1-resilient function f(x) is obtained as before. The
nonlinearity of f is 488, algebraic degree is 8 and +f = 48.
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B The 12-Variable 1-Resilient Functions

Algorithm 1 gives us k = 44. We compute r0 = 1 and r1 = 0 so that m0 = 25 and
m1 = 5. Using all points of weight ≤ 1, generators [1, 3], [1, 4] and the reserved
generator [1, 2] (2 divides n) for points of weight 2 we get S0 = S0 ⊕ b(S0) with
38 rows.

Using the point of weight zero and the reserved generator [1]=(000000000001)
(1 divides n) we get after permutation

S1 ⊕ b(S1) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

We find that z′ = 5. We add these in the rows of S1 ⊕ b(S1) to get

S1 ⊕ b(S1) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
and

S1 = 1 ⊕ S1 ⊕ b(S1) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 0 1 1 1 1 1
0 0 1 1 1 0 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Taking g(Y ) = 0 and π(Y ) = Y. we get the value of b(x) = b(X,Y ) = X ·π(Y )+
g(Y ) to be zero when x ∈ S0 and one when x ∈ S1. Also π and g satisfy Condi-
tions 3 & 4. A 1-resilient function f(x) is obtained as before. The nonlinearity
of f is 2000 and algebraic degree is 10. The function f we constructed here has
+f = 104 and this is the best known value which is achieved for the first time
here.

C The 14-Variable 1-Resilient Functions

Algorithm 1 gives us k = 86. We compute r0 = 1 and r1 = 0 so that m0 = 60
and m1 = 10. Using all points of weight ≤ 1, generators [1, 3], [1, 4], [1, 5], [1, 6]
and the reserved generator [1, 2] (2 divides n) for points of weight 2 we get
S0 = S0 ⊕ b(S0) with 75 rows.

Using the point of weight zero and the reserved generator [1] (1 divides n) we
get after permutation
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S1 ⊕ b(S1) =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎠.

We find that z′ = 3. We add these in the rows of S1 ⊕ b(S1) to get

S1 = 1⊕ S1 ⊕ b(S1) =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 1 1 1 1 0 0 0 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1

⎞⎟⎟⎟⎟⎟⎠.

We define g and π below which satisfies the conditions for construction of the
required bent function.

1. g(Y ) =
{

1, if Y ∈ A
0, otherwise.

where

A = {(0, 0, 0, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 0), (1, 1, 1, 1, 1, 0, 1),
(1, 1, 1, 1, 0, 1, 1), (1, 1, 1, 0, 1, 1, 1), (1, 1, 0, 1, 1, 1, 1),
(1, 0, 1, 1, 1, 1, 1), (0, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1)}

2. π(Y ) = Y.

If we take π and g as above then we get the value of b(x) = b(X,Y ) = X ·
π(Y ) + g(Y ) to be zero when x ∈ S0 and one when x ∈ S1. Also π and g
satisfy Conditions 3 & 4. A 1-resilient function f(x) is obtained as before. The
function f we constructed here has nonlinearity 8098 and this is the best known
nonlinearity value which is achieved for the first time here.
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